GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Adenosine triphosphatase activity; BIOACID; Biological Impacts of Ocean Acidification; Change in Sodium/potassium ATPase alpha subunit expression; Replicates; Sodium/Potassium adenosine triphosphatase activity; Species; Standard deviation; Type  (1)
  • Osmoregulation  (1)
Document type
Keywords
Publisher
Years
  • 1
    ISSN: 1432-0878
    Keywords: Key words Immunolocalization ; Na+ ; K+-ATPase ; Osmoregulation ; Homarus gammarus (Crustacea)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The localization of Na+,K+-ATPase in epithelia of the organs of the branchial cavity of Homarus gammarus exposed to seawater and dilute seawater was examined by immunofluorescence microscopy and immunogold electron microscopy with a monoclonal antibody IgGα5 raised against the avian α-subunit of the Na+,K+-ATPase. In juveniles held in seawater, fluorescent staining was observed only in the epithelial cells of epipodites. In juveniles held in dilute seawater, heavier immunoreactivity was observed in the epithelial cells of epipodites, and positive immunostaining was also observed along the inner-side epithelial layer of the branchiostegites. No fluorescent staining was observed in the gill epithelia. At the ultrastructural level, the Na+,K+-ATPase was localized in the basolateral infolding systems of the epipodite and inner-side branchiostegite epithelia of juveniles held in dilute seawater, mostly along the basal lamina. The expression of Na+,K+-ATPase therefore differs within tissues of the branchial cavity and according to the external salinity. These and previous ultrastructural observations suggest that the epipodites, and to a lesser extent the inner-side epithelium of the branchiostegites, are involved in the slight hyper-regulation displayed by lobsters at low salinity. Enhanced Na+,K+-ATPase activity and de novo synthesis of Na+,K+-ATPase within the epipodite and branchiostegite epithelia may be key points enabling lobsters to adapt to low salinity environments.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Hu, Marian Y; Sucre, Elliott; Charmantier-Daures, Mireille; Charmantier, Guy; Lucassen, Magnus; Himmerkus, Nina; Melzner, Frank (2010): Localization of ion-regulatory epithelia in embryos and hatchlings of two cephalopods. Cell and Tissue Research, 339(3), 571-583, https://doi.org/10.1007/s00441-009-0921-8
    Publication Date: 2024-07-19
    Description: The tissue distribution and ontogeny of Na+/K+-ATPase has been examined as an indicator for ion-regulatory epithelia in whole animal sections of embryos and hatchlings of two cephalopod species: the squid Loligo vulgaris and the cuttlefish Sepia officinalis. This is the first report of the immunohistochemical localization of cephalopod Na+/K+-ATPase with the polyclonal antibody alpha (H-300) raised against the human alpha1-subunit of Na+/K+-ATPase. Na+/K+-ATPase immunoreactivity was observed in several tissues (gills, pancreatic appendages, nerves), exclusively located in baso-lateral membranes lining blood sinuses. Furthermore, large single cells in the gill of adult L. vulgaris specimens closely resembled Na+/K+-ATPase-rich cells described in fish. Immunohistochemical observations indicated that the amount and distribution of Na+/K+-ATPase in late cuttlefish embryos was similar to that found in juvenile and adult stages. The ion-regulatory epithelia (e.g., gills, excretory organs) of the squid embryos and paralarvae exhibited less differentiation than adults. Na+/K+-ATPase activities for whole animals were higher in hatchlings of S. officinalis (157.0 ± 32.4 µmol/g FM/h) than in those of L. vulgaris (31.8 ± 3.3 µmol/g FM/h). S. officinalis gills and pancreatic appendages achieved activities of 94.8 ± 18.5 and 421.8 ± 102.3 µmol ATP/g FM/h, respectively. High concentrations of Na+/K+-ATPase in late cephalopod embryos might be important in coping with the challenging abiotic conditions (low pH, high pCO2) that these organisms encounter inside their eggs. Our results also suggest a higher sensitivity of squid vs. cuttlefish embryos to environmental acid-base disturbances.
    Keywords: Adenosine triphosphatase activity; BIOACID; Biological Impacts of Ocean Acidification; Change in Sodium/potassium ATPase alpha subunit expression; Replicates; Sodium/Potassium adenosine triphosphatase activity; Species; Standard deviation; Type
    Type: dataset
    Format: text/tab-separated-values, 40 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...