GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Adenosine 5-Triphosphate, standard deviation; Adenosine triphosphate, per wet mass; Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Arctic; Arthropoda; Bicarbonate ion; Body mass; Body mass, standard deviation; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Kongsfjord_centremost; Laboratory experiment; Lactate; Lactate, standard deviation; OA-ICC; Ocean Acidification International Coordination Centre; Open ocean; Other metabolic rates; Oxygen consumption, per mass; Oxygen consumption, standard deviation; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Polar; Potentiometric; Potentiometric titration; Registration number of species; Replicates; Respiration; Salinity; Salinity, standard deviation; Single species; Species; Temperature, water; Temperature, water, standard deviation; Thysanoessa inermis; Type; Uniform resource locator/link to reference; Zooplankton  (1)
Document type
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Venello, Theresa A; Calosi, Piero; Turner, Lucy M; Findlay, Helen S (2018): Overwintering individuals of the Arctic krill Thysanoessa inermis appear tolerant to short-term exposure to low pH conditions. Polar Biology, 41(2), 341-352, https://doi.org/10.1007/s00300-017-2194-0
    Publication Date: 2024-03-15
    Description: Areas of the Arctic Ocean are already experiencing seasonal variation in low pH/elevated pCO2and are predicted to be the most affected by future ocean acidification (OA). Krill play a fundamental ecological role within Arctic ecosystems, serving as a vital link in the transfer of energy from phytoplankton to higher trophic levels. However, little is known of the chemical habitat occupied by Arctic invertebrate species, and of their responses to changes in seawater pH. Therefore, understanding krill's responses to low pH conditions has important implications for the prediction of how Arctic marine communities may respond to future ocean change. Here, we present natural seawater carbonate chemistry conditions found in the late polar winter (April) in Kongsfjord, Svalbard (79°North) as well as the response of the Arctic krill, Thysanoessa inermis, exposed to a range of low pH conditions. Standard metabolic rate (measured as oxygen consumption) and energy metabolism markers (incl. adenosine triphosphate (ATP) and l-lactate) of T. inermis were examined. We show that after a 7 days experiment with T. inermis, no significant effects of low pH on MO2, ATP and l-lactate were observed. Additionally, we report carbonate chemistry from within Kongsfjord, which showed that the more stratified inner fjord had lower total alkalinity, higher dissolved inorganic carbon, pCO2 and lower pH than the well-mixed outer fjord. Consequently, our results suggest that overwintering individuals of T. inermis may possess sufficient ability to tolerate short-term low pH conditions due to their migratory behaviour, which exposes T. inermis to the naturally varying carbonate chemistry observed within Kongsfjord, potentially allowing T. inermis to tolerate future OA scenarios.
    Keywords: Adenosine 5-Triphosphate, standard deviation; Adenosine triphosphate, per wet mass; Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Arctic; Arthropoda; Bicarbonate ion; Body mass; Body mass, standard deviation; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Kongsfjord_centremost; Laboratory experiment; Lactate; Lactate, standard deviation; OA-ICC; Ocean Acidification International Coordination Centre; Open ocean; Other metabolic rates; Oxygen consumption, per mass; Oxygen consumption, standard deviation; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Polar; Potentiometric; Potentiometric titration; Registration number of species; Replicates; Respiration; Salinity; Salinity, standard deviation; Single species; Species; Temperature, water; Temperature, water, standard deviation; Thysanoessa inermis; Type; Uniform resource locator/link to reference; Zooplankton
    Type: Dataset
    Format: text/tab-separated-values, 172 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...