GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Underwater acoustic propagation  (13)
  • Acoustic wave scattering  (5)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © IEEE, 2004. This article is posted here by permission of IEEE for personal use, not for redistribution. The definitive version was published in IEEE Journal of Oceanic Engineering 29 (2004): 1264-1279, doi:10.1109/JOE.2004.836997.
    Description: We present analyses of fluctuations seen in acoustic signals transmitted by two 400-Hz sources moored as part of the ASIAEX 2001 South China Sea (SCS) experiment. One source was near the bottom in 350-m deep water 31.3 km offshore from the receiving array, and the other was near the bottom in 135-m deep water 20.6 km alongshore from the array. Time series of signal intensity measured at individual phones of a 16-element vertical line array are analyzed, as well as time series of intensity averaged over the array. Signals were recorded from 2 May to 17 May 2001. Fluctuations were observed at periods ranging from subtidal (days) to the shortest periods resolved with our signaling (10 s). Short-period fluctuations of depth- and time-averaged intensity have scintillation indexes (computed within 3-h long windows) which peak at values near 0.5 during an interval of numerous high-amplitude internal gravity waves, and which are lower during intervals with fewer internal waves. The decorrelation times of the averaged intensity (energy level) are also closely related to internal wave properties. Scintillation indexes computed for unaveraged pulses arriving at individual phones often exceed unity.
    Description: This work was supported by the U.S. Office of Naval Research.
    Keywords: Acoustic intensity ; Fluctuation ; Underwater acoustic propagation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 1070723 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 1998. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 103 (1998): 330-335, doi:10.1121/1.421092.
    Description: Amplitude and phase fluctuations of monochromatic acoustic signals traveling through diffuse mid-ocean ridge hydrothermal vent plumes are modeled using existing theory in an attempt to find suitable frequencies and path lengths for plume monitoring. Weak-scattering solutions are evaluated numerically, with model parameters adjusted to match observed plume characteristics. Constraints required for weak-scattering solutions to be valid can be met for transmission ranges of 500–2000 m and frequencies of 20–80 kHz. Therefore, because fluid structure and scattering strength are more closely linked for weak scattering than for stronger scattering, inversion for fluid statistical properties may be possible, enabling diffuse vent monitoring. Such monitoring would be subject to geometric assumptions such as transmission entirely within a statistically homogeneous plume. Performance-limiting phase fluctuations have also been computed for a 13–17 kHz geodetic survey system.
    Description: This work was supported by the Woods Hole Oceanographic Institution with research funds provided by the Mellon Foundation.
    Keywords: Underwater sound ; Oceanography ; Acoustic wave scattering ; Seafloor phenomena
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2006. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 119 (2006): 3717-3725, doi:10.1121/1.2200699.
    Description: Expressions governing coherence scales of sound passing through a moving packet of nonlinear internal waves in a continental shelf environment are presented. The expressions describe the temporal coherence scale at a point, and the horizontal coherence scale in a plane transverse to the acoustic path, respectively. Factors in the expressions are the wave packet propagation speed, wave packet propagation direction, the fractional distance from the packet to the source, and the spatial scale S of packet displacement required to cause acoustic field decorrelation. The scale S is determined by the details of coupled mode propagation within the packet and the waveguide. Here, S is evaluated as a function of frequency for one environment, providing numerical values for the coherence scales of this environment. Coherence scales derived from numerical simulation of coupled mode acoustic propagation through moving wave packets substantiate the expressions.
    Description: This work was funded by grants from the Ocean Acoustics Program of the U.S. Office of Naval Research.
    Keywords: Underwater sound ; Acoustic wave propagation ; Acoustic field ; Acoustic waveguides ; Acoustic wave scattering
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2009. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 126 (2009): 1752-1765, doi:10.1121/1.3203268.
    Description: Horizontal ducting of sound between short-wavelength nonlinear internal gravity waves in coastal environments has been reported in many theoretical and experimental studies. Important consequences arising at the open end of an internal wave duct (the termination) are examined in this paper with three-dimensional normal mode theory and parabolic approximation modeling. For an acoustic source located in such a duct and sufficiently far from the termination, some of the propagating sound may exit the duct by penetrating the waves at high grazing angles, but a fair amount of the sound energy is still trapped in the duct and propagates toward the termination. Analysis here shows that the across-duct sound energy distribution at the termination is unique for each acoustic vertical mode, and as a result the sound radiating from the termination of the duct forms horizontal beams that are different for each mode. In addition to narrowband analysis, a broadband simulation is made for water depths of order 80 m and propagation distances of 24 km. Situations occur with one or more modes absent in the radiated field and with mode multipath in the impulse response. These are both consistent with field observations.
    Description: This work was supported under ONR Grant No. N00014-05-1-0482 and the ONR postdoctoral fellowship award, Grant No. N00014-08-1-0204.
    Keywords: Acoustic field ; Acoustic intensity ; Approximation theory ; Parabolic equations ; Underwater acoustic propagation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © IEEE, 1999. This article is posted here by permission of IEEE for personal use, not for redistribution. The definitive version was published in IEEE Journal of Oceanic Engineering 24 (1999): 16-32, doi:10.1109/48.740153.
    Description: Propagation of 400-Hz sound through continental-shelf internal solitary wave packets is shown by numerical simulation to be strongly influenced by coupling of normal modes. Coupling in a packet is controlled by the mode coefficients at the point where sound enters the packet, the dimensions of the waves and packet, and the ambient depth structures of temperature and salinity. In the case of a moving packet, changes of phases of the incident modes with respect to each other dominate over the other factors, altering the coupling over time and thus inducing signal fluctuations. The phasing within a moving packet varies with time scales of minutes, causing coupling and signal fluctuations with comparable time scales. The directionality of energy flux between high-order acoustic modes and (less attenuated) low-order modes determines a gain factor for long-range propagation. A significant finding is that energy flux toward low-order modes through the effect of a packet near a source favoring high-order modes will give net amplification at distant ranges. Conversely, a packet far from a source sends energy into otherwise quiet higher modes. The intermittency of the coupling and of high-mode attenuation via bottom interaction means that signal energy fluctuations and modal diversity fluctuations at a distant receiver are complementary, with energy fluctuations suggesting a source-region packet and mode fluctuations suggesting a receiver-region packet. Simulations entailing 33-km propagation are used in the analyses, imitating the SWARM experiment geometry, allowing comparison with observations
    Description: This work was supported by the Office of Naval Research under Grant N00014-95-1- 0029 and Grant N00014-95-1-0051.
    Keywords: Coupled mode analysis ; Underwater acoustic propagation ; Underwater acoustics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2012. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 131 (2012): 1689-1700, doi:10.1121/1.3666004.
    Description: Experimental observations and theoretical studies show that nonlinear internal waves occur widely in shallow water and cause acoustic propagation effects including ducting and mode coupling. Horizontal ducting results when acoustic modes travel between internal wave fronts that form waveguide boundaries. For small grazing angles between a mode trajectory and a front, an interference pattern may arise that is a horizontal Lloyd mirror pattern. An analytic description for this feature is provided along with comparisons between results from the formulated model predicting a horizontal Lloyd mirror pattern and an adiabatic mode parabolic equation. Different waveguide models are considered, including boxcar and jump sound speed profiles where change in sound speed is assumed 12 m/s. Modifications to the model are made to include multiple and moving fronts. The focus of this analysis is on different front locations relative to the source as well as on the number of fronts and their curvatures and speeds. Curvature influences mode incidence angles and thereby changes the interference patterns. For sources oriented so that the front appears concave, the areas with interference patterns shrink as curvature increases, while convexly oriented fronts cause patterns to expand.
    Description: The authors thank the Office of Naval Research for funding this work. Additionally, the first author is supported through an ONR Ocean Acoustics Traineeship.
    Keywords: Acoustic waveguides ; Nonlinear acoustics ; Underwater acoustic propagation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2012. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 131 (2012): EL492-EL498, doi:10.1121/1.4722193.
    Description: Motivated by measurements made in the 2004 Long-Range Ocean Acoustic Propagation Experiment (LOAPEX), the problem of mode processing transient acoustic signals collected on two nearby vertical line arrays is considered. The first three moments (centroid, variance, and skewness) of broadband distributions of acoustic energy with fixed mode number (referred to as modal group arrivals) are estimated. It is shown that despite the absence of signal coherence between the two arrays and poor high mode number energy resolution, the centroid and variance of these distributions can be estimated with tolerable errors using piecewise coherent mode processing as described in this paper.
    Description: This work was supported by the Office of Naval Research, Code 322, Grant Nos. N00014-06-1-0245, N00014-08-1-0195, and N00014-11-1-0194.
    Keywords: Acoustic arrays ; Acoustic signal processing ; Modal analysis ; Underwater acoustic propagation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2012. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 131 (2012): 4409-4427, doi:10.1121/1.4707431.
    Description: The results of mode-processing measurements of broadband acoustic wavefields made in the fall of 2004 as part of the Long-Range Ocean Acoustic Propagation Experiment (LOAPEX) in the eastern North Pacific Ocean are reported here. Transient wavefields in the 50–90 Hz band that were recorded on a 1400 -m long 40 element vertical array centered near the sound channel axis are analyzed. This array was designed to resolve low-order modes. The wavefields were excited by a ship-suspended source at seven ranges, between approximately 50 and 3200 km, from the receiving array. The range evolution of broadband modal arrival patterns corresponding to fixed mode numbers (“modal group arrivals”) is analyzed with an emphasis on the second (variance) and third (skewness) moments. A theory of modal group time spreads is described, emphasizing complexities associated with energy scattering among low-order modes. The temporal structure of measured modal group arrivals is compared to theoretical predictions and numerical simulations. Theory, simulations, and observations generally agree. In cases where disagreement is observed, the reasons for the disagreement are discussed in terms of the underlying physical processes and data limitations.
    Description: This work was supported by the Office of Naval Research, Code 322, Grant Nos. N00014-08-1-0195, N00014-06-1-0245, and N0014-11-1-0194.
    Keywords: Acoustic field ; Underwater acoustic propagation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2011. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 130 (2011): 1173-1187, doi:10.1121/1.3605565.
    Description: A study of 400 Hz sound focusing and ducting effects in a packet of curved nonlinear internal waves in shallow water is presented. Sound propagation roughly along the crests of the waves is simulated with a three-dimensional parabolic equation computational code, and the results are compared to measured propagation along fixed 3 and 6 km source/receiver paths. The measurements were made on the shelf of the South China Sea northeast of Tung-Sha Island. Construction of the time-varying three-dimensional sound-speed fields used in the modeling simulations was guided by environmental data collected concurrently with the acoustic data. Computed three-dimensional propagation results compare well with field observations. The simulations allow identification of time-dependent sound forward scattering and ducting processes within the curved internal gravity waves. Strong acoustic intensity enhancement was observed during passage of high-amplitude nonlinear waves over the source/receiver paths, and is replicated in the model. The waves were typical of the region (35 m vertical displacement). Two types of ducting are found in the model, which occur asynchronously. One type is three-dimensional modal trapping in deep ducts within the wave crests (shallow thermocline zones). The second type is surface ducting within the wave troughs (deep thermocline zones).
    Description: Grants from the Office of Naval Research funded this work. Use of the vessels Ocean Researcher I and Ocean Researcher II in this experiment was funded by the Taiwan National Science Council.
    Keywords: Acoustic field ; Acoustic focusing ; Acoustic intensity ; Acoustic wave scattering ; Acoustic wave velocity ; Ocean waves ; Oceanographic regions ; Underwater acoustic propagation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © IEEE, 1997. This article is posted here by permission of IEEE for personal use, not for redistribution. The definitive version was published in IEEE Journal of Oceanic Engineering 22 (1997): 256-269, doi:10.1109/48.585945.
    Description: Three techniques are used to investigate mode coupling as acoustic energy passes through continental-shelf internal solitary waves (ISW's). Results from all techniques agree. The waves considered here are single downward undulations of a thermocline layer separating upper and lower well-mixed layers. Two techniques are numerical: parabolic equation (PE) solution and a sudden approximation joining range-invariant regions at sharp vertical interfaces. The third technique is an analytic derivation of ISW scale lengths separating adiabatic (at large scale) and coupled-mode propagation. Results show that energy is exchanged between modes as ISW's are traversed. The sharp interface solutions help explain this in terms of spatially confined coupling and modal phase interference. Three regimes are observed: 1) for short ISW's, coupling upon wave entrance is reversed upon exit, with no net coupling; 2) for ISW scales of 75-200 m, modal phase alteration averts the exit reversal, giving net coupling; transparent resonances yielding no net coupling are also observed in this regime; and 3) for long ISW's, adiabaticity is probable but not universal. Mode refraction analysis for nonparallel acoustic-ISW alignment suggests that these two-dimensional techniques remain valid for 0° (parallel) to 65° (oblique) incidence, with an accordant ISW stretching
    Description: This work was supported by the Office of Naval Research under Grant N00014-95-1-0029 and Grant N00014-95-1-0051.
    Keywords: Coupled mode analysis ; Underwater acoustic propagation ; Underwater acoustics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...