GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
  • 1
    Publication Date: 2020-02-06
    Description: Ocean acidification severely affects bivalves, especially their larval stages. Consequently, the fate of this ecologically and economically important group depends on the capacity and rate of evolutionary adaptation to altered ocean carbonate chemistry. We document successful settlement of wild mussel larvae (Mytilus edulis) in a periodically CO2-enriched habitat. The larval fitness of the population originating from the CO2-enriched habitat was compared to the response of a population from a nonenriched habitat in a common garden experiment. The high CO2–adapted population showed higher fitness under elevated Pco2 (partial pressure of CO2) than the non-adapted cohort, demonstrating, for the first time, an evolutionary response of a natural mussel population to ocean acidification. To assess the rate of adaptation, we performed a selection experiment over three generations. CO2 tolerance differed substantially between the families within the F1 generation, and survival was drastically decreased in the highest, yet realistic, Pco2 treatment. Selection of CO2-tolerant F1 animals resulted in higher calcification performance of F2 larvae during early shell formation but did not improve overall survival. Our results thus reveal significant short-term selective responses of traits directly affected by ocean acidification and long-term adaptation potential in a key bivalve species. Because immediate response to selection did not directly translate into increased fitness, multigenerational studies need to take into consideration the multivariate nature of selection acting in natural habitats. Combinations of short-term selection with long-term adaptation in populations from CO2-enriched versus nonenriched natural habitats represent promising approaches for estimating adaptive potential of organisms facing global change.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-07-14
    Description: Climate change with increasing temperature and ocean acidification (OA) poses risks for marine ecosystems. According to Portner and Farrell [1], synergistic effects of elevated temperature and CO(2)-induced OA on energy metabolism will narrow the thermal tolerance window of marine ectothermal animals. To test this hypothesis, we investigated the effect of an acute temperature rise on energy metabolism of the oyster, Crassostrea gigas chronically exposed to elevated CO(2) levels (partial pressure of CO(2) in the seawater similar to 0.15 kPa, seawater pH similar to 7.7). Within one month of incubation at elevated PCO(2) and 15 degrees C hemolymph pH fell (pH(e) = 7.1 +/- 0.2 (CO(2)-group) vs. 7.6 +/- 0.1 (control)) and P(e)CO(2) values in hemolymph increased (0.5 +/- 0.2 kPa (CO(2)-group) vs. 0.2 +/- 0.04 kPa (control)). Slightly but significantly elevated bicarbonate concentrations in the hemolymph of CO(2)-incubated oysters ([HCO(3)(-)](e) = 1.8 +/- 0.3 mM (CO(2)-group) vs. 1.3 +/- 0.1 mM (control)) indicate only minimal regulation of extracellular acid-base status. At the acclimation temperature of 15 degrees C the OA-induced decrease in pHe did not lead to metabolic depression in oysters as standard metabolism rates (SMR) of CO(2)-exposed oysters were similar to controls. Upon acute warming SMR rose in both groups, but displayed a stronger increase in the CO(2)-incubated group. Investigation in isolated gill cells revealed a similar temperature-dependence of respiration between groups. Furthermore, the fraction of cellular energy demand for ion regulation via Na(+)/K(+)-ATPase was not affected by chronic hypercapnia or temperature. Metabolic profiling using (1)H-NMR spectroscopy revealed substantial changes in some tissues following OA exposure at 15 degrees C. In mantle tissue alanine and ATP levels decreased significantly whereas an increase in succinate levels was observed in gill tissue. These findings suggest shifts in metabolic pathways following OA-exposure. Our study confirms that OA affects energy metabolism in oysters and suggests that climate change may affect populations of sessile coastal invertebrates such as mollusks.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-09-01
    Description: The ongoing process of ocean acidification already affects marine life, and according to the concept of oxygen and capacity limitation of thermal tolerance, these effects may be intensified at the borders of the thermal tolerance window. We studied the effects of elevated CO2 concentrations on clapping performance and energy metabolism of the commercially important scallop Pecten maximus. Individuals were exposed for at least 30 days to 4 °C (winter) or to 10 °C (spring/summer) at either ambient (0.04 kPa, normocapnia) or predicted future PCO2 levels (0.11 kPa, hypercapnia). Cold-exposed (4 °C) groups revealed thermal stress exacerbated by PCO2 indicated by a high mortality overall and its increase from 55 % under normocapnia to 90 % under hypercapnia. We therefore excluded the 4 °C groups from further experimentation. Scallops at 10 °C showed impaired clapping performance following hypercapnic exposure. Force production was significantly reduced although the number of claps was unchanged between normocapnia- and hypercapnia-exposed scallops. The difference between maximal and resting metabolic rate (aerobic scope) of the hypercapnic scallops was significantly reduced compared with normocapnic animals, indicating a reduction in net aerobic scope. Our data confirm that ocean acidification narrows the thermal tolerance range of scallops resulting in elevated vulnerability to temperature extremes and impairs the animal’s performance capacity with potentially detrimental consequences for its fitness and survival in the ocean of tomorrow.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-03-14
    Keywords: BIOACID; Biological Impacts of Ocean Acidification; Figure; Location; Month; pH; pH, standard deviation; Species; Type
    Type: Dataset
    Format: text/tab-separated-values, 168 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven | Supplement to: Tripp-Valdez, Miguel Angel; Lucassen, Magnus; Lluch-Cota, Salvador E; Sicard, M Teresa; Lannig, Gisela; Pörtner, Hans-Otto (2017): Metabolic response and thermal tolerance of green abalone juveniles (Haliotis fulgens: Gastropoda) under acute hypoxia and hypercapnia. Journal of Experimental Marine Biology and Ecology, 497, 11-18, https://doi.org/10.1016/j.jembe.2017.09.002
    Publication Date: 2023-03-16
    Description: Data derived from a study aimed to detect differences in thermal tolerance by investigating the underlying metabolic responses in the green abalone (Haliotis fulgens) under conditions of hypoxia and hypercapnia. Juvenile abalones were exposed to a temperature ramp (+3 °C day−1) under hypoxia (50% air saturation) and hypercapnia (~1000 μatm pCO2), both individually and in combination. Impacts on energy metabolism were assessed by analyzing whole animal respiration rates and metabolic profiles of gills and hepatopancreas via 1H NMR spectroscopy. The experiments are depicted as warming (warming ramp under normoxic normocapnia), hypoxia (warming ramp under hypoxic normocapnia), hypercapnia (warming ramp under normoxic hypercapnia), and combined (warming ramp under hypoxic hypercapnia). Each experiment was accompanied by a Control group, which was exposed to the same water PO2 and PCO2 but at a stable temperature (18 °C).
    Keywords: File content; File format; File name; File size; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 24 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Schalkhausser, Burgel; Bock, Christian; Stemmer, Kristina; Brey, Thomas; Pörtner, Hans-Otto; Lannig, Gisela (2013): Impact of ocean acidification on escape performance of the king scallop, Pecten maximus, from Norway. Marine Biology, 160(8), 1995-2006, https://doi.org/10.1007/s00227-012-2057-8
    Publication Date: 2023-05-12
    Description: The ongoing process of ocean acidification already affects marine life and, according to the concept of oxygen- and capacity limitation of thermal tolerance (OCLTT), these effects may be exacerbated at the boarders of the thermal tolerance window. We studied the effects of elevated CO2 concentrations on clapping performance and energy metabolism of the commercially important scallop Pecten maximus. Individuals were exposed for at least 30 days to 4°C (winter) or to 10°C (spring/summer) at either ambient (0.04 kPa, normocapnia) or predicted future PCO2 levels (0.11 kPa, hypercapnia). Cold (4°C) exposed groups revealed thermal stress exacerbated by PCO2 indicated by a high mortality overall and its increase from 55% under normocapnia to 90% under hypercapnia. We therefore excluded the 4°C groups from further experimentation. Scallops at 10°C showed impaired clapping performance following hypercapnic exposure. Force production was significantly reduced although the number of claps was unchanged between normo- and hypercapnia exposed scallops. The difference between maximal and resting metabolic rate (aerobic scope) of the hypercapnic scallops was significantly reduced compared to normocapnic animals, indicating a reduction in net aerobic scope. Our data confirm that ocean acidification narrows the thermal tolerance range of scallops resulting in elevated vulnerability to temperature extremes and impairs the animal's performance capacity with potentially detrimental consequences for its fitness and survival in the ocean of tomorrow.
    Keywords: BIOACID; Biological Impacts of Ocean Acidification
    Type: Dataset
    Format: application/zip, 5 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Stapp, Laura; Parker, Laura M; O'Connor, Wayne A; Bock, Christian; Ross, Pauline M; Pörtner, Hans-Otto; Lannig, Gisela (2018): Sensitivity to ocean acidification differs between populations of the Sydney rock oyster: Role of filtration and ion-regulatory capacities. Marine Environmental Research, 135, 103-113, https://doi.org/10.1016/j.marenvres.2017.12.017
    Publication Date: 2023-05-12
    Description: Understanding mechanisms of intraspecific variation in resilience to environmental drivers is key to predict species' adaptive potential. Recent studies show a higher CO2 resilience of Sydney rock oysters selectively bred for increased growth and disease resistance ('selected oysters') compared to the wild population. We tested whether the higher resilience of selected oysters correlates with an increased ability to compensate for CO2-induced acid-base disturbances. After 7 weeks of exposure to elevated seawater PCO2 (1100 µatm), wild oysters had a lower extracellular pH (pHe = 7.54 ± 0.02 (control) vs. 7.40 ± 0.03 (elevated PCO2)) and increased hemolymph PCO2 whereas extracellular acid-base status of selected oysters remained unaffected. However, differing pHe values between oyster types were not linked to altered metabolic costs of major ion regulators (Na+/K+-ATPase, H+-ATPase and Na+/H+-exchanger) in gill and mantle tissues. Our findings suggest that selected oysters possess an increased systemic capacity to eliminate metabolic CO2, possibly through higher and energetically more efficient filtration rates and associated gas exchange. Thus, effective filtration and CO2 resilience might be positively correlated traits in oysters.
    Keywords: Acid-base regulation; Animalia; Benthic animals; Benthos; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Growth/Morphology; Laboratory experiment; Mollusca; OA-ICC; Ocean Acidification International Coordination Centre; Other metabolic rates; Respiration; Saccostrea glomerata; Single species; South Pacific; Temperate
    Type: Dataset
    Format: application/zip, 5 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Thomsen, Jörn; Stapp, Laura; Haynert, Kristin; Schade, Hanna; Danelli, Maria; Lannig, Gisela; Wegner, K Mathias; Melzner, Frank (2017): Naturally acidified habitat selects for ocean acidification-tolerant mussels. Science Advances, 3(4), e1602411, https://doi.org/10.1126/sciadv.1602411
    Publication Date: 2023-02-24
    Description: Ocean acidification severely affects bivalves, especially their larval stages. Consequently, the fate of this ecologically and economically important group depends on the capacity and rate of evolutionary adaptation to altered ocean carbonate chemistry. We document successful settlement of wild mussel larvae (Mytilus edulis) in a periodically CO2-enriched habitat. The larval fitness of the population originating from the CO2-enriched habitat was compared to the response of a population from a nonenriched habitat in a common garden experiment. The high CO2-adapted population showed higher fitness under elevated Pco2 (partial pressure of CO2) than the non-adapted cohort, demonstrating, for the first time, an evolutionary response of a natural mussel population to ocean acidification. To assess the rate of adaptation, we performed a selection experiment over three generations. CO2 tolerance differed substantially between the families within the F1 generation, and survival was drastically decreased in the highest, yet realistic, Pco2 treatment. Selection of CO2-tolerant F1 animals resulted in higher calcification performance of F2 larvae during early shell formation but did not improve overall survival. Our results thus reveal significant short-term selective responses of traits directly affected by ocean acidification and long-term adaptation potential in a key bivalve species. Because immediate response to selection did not directly translate into increased fitness, multigenerational studies need to take into consideration the multivariate nature of selection acting in natural habitats. Combinations of short-term selection with long-term adaptation in populations from CO2-enriched versus nonenriched natural habitats represent promising approaches for estimating adaptive potential of organisms facing global change.
    Keywords: BIOACID; Biological Impacts of Ocean Acidification
    Type: Dataset
    Format: application/zip, 6 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Stapp, Laura; Kreiss, Cornelia M; Pörtner, Hans-Otto; Lannig, Gisela (2015): Differential impacts of elevated CO2 and acidosis on the energy budget of gill and liver cells from Atlantic cod, Gadus morhua. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 187, 160-167, https://doi.org/10.1016/j.cbpa.2015.05.009
    Publication Date: 2023-02-24
    Description: Ocean acidification impacts fish and other marine species through increased seawater PCO2 levels (hypercapnia). Knowledge of the physiological mechanisms mediating effects in various tissues of fish is incomplete. Here we tested the effects of extracellular hypercapnia and acidosis on energy metabolism of gill and liver cells of Atlantic cod. Exposure media mimicked blood conditions in vivo, either during normo- or hypercapnia and at control or acidic extracellular pH (pHe). We determined metabolic rate and energy expenditure for protein biosynthesis, Na+/K+-ATPase and H+-ATPase and considered nutrition status by measurements of metabolic rate and protein biosynthesis in media with and without free amino acids (FAA). Addition of FAA stimulated hepatic but not branchial oxygen consumption. Normo- and hypercapnic acidosis as well as hypercapnia at control pHe depressed metabolic stimulation of hepatocytes. In gill cells, acidosis depressed respiration independent of PCO2 and FAA levels. For both cell types, depressed respiration was not correlated with the same reduction in energy allocated to protein biosynthesis or Na+/K+-ATPase. Hepatic energy expenditure for protein synthesis and Na+/K+- ATPase was even elevated at acidic compared to control pHe suggesting increased costs for ion regulation and cel- lular reorganization. Hypercapnia at control pHe strongly reduced oxygen demand of branchial Na+/K+-ATPase with a similar trend for H+-ATPase. We conclude that extracellular acidosis triggers metabolic depression in gill and metabolically stimulated liver cells. Additionally, hypercapnia itself seems to limit capacities for metabolic usage of amino acids in liver cells while it decreases the use and costs of ion regulatory ATPases in gill cells.
    Keywords: BIOACID; Biological Impacts of Ocean Acidification; Helgoland; Helgoland, North Sea; MULT; Multiple investigations
    Type: Dataset
    Format: application/zip, 70.1 kBytes
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-02-24
    Keywords: BIOACID; Biological Impacts of Ocean Acidification; DATE/TIME; Day of the year; Figure; Number; Period; Species; Standard deviation; Type
    Type: Dataset
    Format: text/tab-separated-values, 56 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...