GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Acid-base regulation; Alkalinity, total; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Bicarbonate ion; BIOACID; Biological Impacts of Ocean Acidification; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calcite saturation state, standard deviation; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Echinodermata; Figure; Fluorescence; Fluorescence, standard deviation; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Laboratory experiment; Molecular mass; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, extracellular; pH, intracellular; pH, standard deviation; Ratio; Recovery; Replicate; Salinity; Salinity, standard deviation; Single species; Slope inclination; Species; Strongylocentrotus droebachiensis; Temperate; Temperature, water; Temperature, water, standard deviation; Time in minutes; Time in seconds; Treatment; Zooplankton  (1)
  • Aland_Foglo; Alexandrium ostenfeldii; Alkalinity, total; Alkalinity, total, standard error; Aragonite saturation state; Baltic Sea; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cellular gonyautoxins 2,3; Cellular paralytic shellfish toxin, total; Cellular saxitoxin; Cellular saxitoxin/cellular total paralytic shellfish toxin ratio; Chromista; Event label; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; High Performance Liquid Chromatography (HPLC); Identification; Immunology/Self-protection; Laboratory experiment; Laboratory strains; LATITUDE; LONGITUDE; Mediterranean Sea; North Atlantic; NW_Adriatic_Sea; OA-ICC; Ocean Acidification International Coordination Centre; Ochrophyta; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air), standard error; Pelagos; pH; pH, standard error; Phytoplankton; Potentiometric; Salinity; Sample code/label; Single species; Skagerrak_OA; Skeletonema marinoi; Species; Temperature; Temperature, water; Temperature, water, standard error; Treatment  (1)
Document type
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Kremp, Anke; Godhe, Anna; Egardt, Jenny; Dupont, Sam; Suikkanen, Sanna; Casabianca, Silvia; Penna, Antonella (2012): Intraspecific variability in the response of bloom-forming marine microalgae to changed climate conditions. Ecology and Evolution, 2(6), 1195-1207, https://doi.org/10.1002/ece3.245
    Publication Date: 2024-03-15
    Description: Phytoplankton populations can display high levels of genetic diversity that, when reflected by phenotypic variability, may stabilize a species response to environmental changes. We studied the effects of increased temperature and CO2 availability as predicted consequences of global change, on 16 genetically different isolates of the diatom Skeletonema marinoi from the Adriatic Sea and the Skagerrak (North Sea), and on eight strains of the PST (paralytic shellfish toxin)-producing dinoflagellate Alexandrium ostenfeldii from the Baltic Sea. Maximum growth rates were estimated in batch cultures of acclimated isolates grown for five to 10 generations in a factorial design at 20 and 24 °C, and present day and next century applied atmospheric pCO2, respectively. In both species, individual strains were affected in different ways by increased temperature and pCO2. The strongest response variability, buffering overall effects, was detected among Adriatic S. marinoi strains. Skagerrak strains showed a more uniform response, particularly to increased temperature, with an overall positive effect on growth. Increased temperature also caused a general growth stimulation in A. ostenfeldii, despite notable variability in strain-specific response patterns. Our data revealed a significant relationship between strain-specific growth rates and the impact of pCO2 on growth-slow growing cultures were generally positively affected, while fast growing cultures showed no or negative responses to increased pCO2. Toxin composition of A. ostenfeldii was consistently altered by elevated temperature and increased CO2 supply in the tested strains, resulting in overall promotion of saxitoxin production by both treatments. Our findings suggest that phenotypic variability within populations plays an important role in the adaptation of phytoplankton to changing environments, potentially attenuating short-term effects and forming the basis for selection. In particular, A. ostenfeldii blooms may expand and increase in toxicity under increased water temperature and atmospheric pCO2 conditions, with potentially severe consequences for the coastal ecosystem.
    Keywords: Aland_Foglo; Alexandrium ostenfeldii; Alkalinity, total; Alkalinity, total, standard error; Aragonite saturation state; Baltic Sea; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cellular gonyautoxins 2,3; Cellular paralytic shellfish toxin, total; Cellular saxitoxin; Cellular saxitoxin/cellular total paralytic shellfish toxin ratio; Chromista; Event label; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; High Performance Liquid Chromatography (HPLC); Identification; Immunology/Self-protection; Laboratory experiment; Laboratory strains; LATITUDE; LONGITUDE; Mediterranean Sea; North Atlantic; NW_Adriatic_Sea; OA-ICC; Ocean Acidification International Coordination Centre; Ochrophyta; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air), standard error; Pelagos; pH; pH, standard error; Phytoplankton; Potentiometric; Salinity; Sample code/label; Single species; Skagerrak_OA; Skeletonema marinoi; Species; Temperature; Temperature, water; Temperature, water, standard error; Treatment
    Type: Dataset
    Format: text/tab-separated-values, 6452 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Stumpp, Meike; Hu, Marian Y; Melzner, Frank; Gutowska, Magdalena A; Dorey, Narimane; Himmerkus, Nina; Holtmann, Wiebke C; Dupont, Sam; Thorndyke, Mike; Bleich, Markus (2012): Acidified seawater impacts sea urchin larvae pH regulatory systems relevant for calcification. Proceedings of the National Academy of Sciences, 109(44), 18192-18197, https://doi.org/10.1073/pnas.1209174109
    Publication Date: 2024-03-15
    Description: Calcifying echinoid larvae respond to changes in seawater carbonate chemistry with reduced growth and developmental delay. To date, no information exists on how ocean acidification acts on pH homeostasis in echinoderm larvae. Understanding acid-base regulatory capacities is important because intracellular formation and maintenance of the calcium carbonate skeleton is dependent on pH homeostasis. Using H(+)-selective microelectrodes and the pH-sensitive fluorescent dye BCECF, we conducted in vivo measurements of extracellular and intracellular pH (pH(e) and pH(i)) in echinoderm larvae. We exposed pluteus larvae to a range of seawater CO(2) conditions and demonstrated that the extracellular compartment surrounding the calcifying primary mesenchyme cells (PMCs) conforms to the surrounding seawater with respect to pH during exposure to elevated seawater pCO(2). Using FITC dextran conjugates, we demonstrate that sea urchin larvae have a leaky integument. PMCs and spicules are therefore directly exposed to strong changes in pH(e) whenever seawater pH changes. However, measurements of pH(i) demonstrated that PMCs are able to fully compensate an induced intracellular acidosis. This was highly dependent on Na(+) and HCO(3)(-), suggesting a bicarbonate buffer mechanism involving secondary active Na(+)-dependent membrane transport proteins. We suggest that, under ocean acidification, maintained pH(i) enables calcification to proceed despite decreased pH(e). However, this probably causes enhanced costs. Increased costs for calcification or cellular homeostasis can be one of the main factors leading to modifications in energy partitioning, which then impacts growth and, ultimately, results in increased mortality of echinoid larvae during the pelagic life stage.
    Keywords: Acid-base regulation; Alkalinity, total; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Bicarbonate ion; BIOACID; Biological Impacts of Ocean Acidification; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calcite saturation state, standard deviation; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Echinodermata; Figure; Fluorescence; Fluorescence, standard deviation; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Laboratory experiment; Molecular mass; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, extracellular; pH, intracellular; pH, standard deviation; Ratio; Recovery; Replicate; Salinity; Salinity, standard deviation; Single species; Slope inclination; Species; Strongylocentrotus droebachiensis; Temperate; Temperature, water; Temperature, water, standard deviation; Time in minutes; Time in seconds; Treatment; Zooplankton
    Type: Dataset
    Format: text/tab-separated-values, 41045 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...