GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Abundance; Abundance per volume; Alkalinity, total; Ammonium; Aragonite saturation state; Bicarbonate ion; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cell size, standard deviation; Chlorophyll a; Coast and continental shelf; Community composition and diversity; Day of experiment; Entire community; EXP; Experiment; Fucoxanthin; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Identification; Laboratory experiment; Mesocosm or benthocosm; Mortality; Mortality/Survival; Nitrate and Nitrite; Nitrite; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; Peridinin; pH; Phosphate; Salinity; Sampling date; Signal; Silicate; Spectrophotometric; Temperate; Temperature, water; Treatment; Type; Wuyuan_Bay_OA  (1)
Document type
Keywords
Publisher
Years
  • 1
    Publication Date: 2024-03-15
    Description: The rise of atmospheric pCO2 has created a number of problems for marine ecosystem. In this study, we initially quantified the effects of elevated pCO2 on the group-specific mortality of phytoplankton in a natural community based on the results of mesocosm experiments. Diatoms dominated the phytoplankton community, and the concentration of chlorophyll a was significantly higher in the high-pCO2 treatment than the low-pCO2 treatment. Phytoplankton mortality (percentage of dead cells) decreased during the exponential growth phase. Although the mortality of dinoflagellates did not differ significantly between the two pCO2 treatments, that of diatoms was lower in the high-pCO2 treatment. Small diatoms dominated the diatom community. Although the mortality of large diatoms did not differ significantly between the two treatments, that of small diatoms was lower in the high-pCO2 treatment. These results suggested that elevated pCO2 might enhance dominance by small diatoms and thereby change the community structure of coastal ecosystems.
    Keywords: Abundance; Abundance per volume; Alkalinity, total; Ammonium; Aragonite saturation state; Bicarbonate ion; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cell size, standard deviation; Chlorophyll a; Coast and continental shelf; Community composition and diversity; Day of experiment; Entire community; EXP; Experiment; Fucoxanthin; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Identification; Laboratory experiment; Mesocosm or benthocosm; Mortality; Mortality/Survival; Nitrate and Nitrite; Nitrite; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; Peridinin; pH; Phosphate; Salinity; Sampling date; Signal; Silicate; Spectrophotometric; Temperate; Temperature, water; Treatment; Type; Wuyuan_Bay_OA
    Type: Dataset
    Format: text/tab-separated-values, 7366 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...