GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Abbreviation; Experiment; File format; File name; File size; Integrierte Analyse zwischeneiszeitlicher Klimadynamik; INTERDYNAMIK; Parameter; Uniform resource locator/link to model result file; Unit  (1)
  • Northern Hemisphere subtropics  (1)
Document type
Keywords
Publisher
Language
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Fischer, Nils; Jungclaus, Johann H (2010): Effects of orbital forcing on atmosphere and ocean heat transports in Holocene and Eemian climate simulations with a comprehensive Earth system model. Climate of the Past, 6, 155-168, https://doi.org/10.5194/cp-6-155-2010
    Publication Date: 2023-11-22
    Description: Orbital forcing does not only exert direct insolation effects, but also alters climate indirectly through feedback mechanisms that modify atmosphere and ocean dynamics and meridional heat and moisture transfers. We investigate the regional effects of these changes by detailed analysis of atmosphere and ocean circulation and heat transports in a coupled atmosphere-ocean-sea ice-biosphere general circulation model (ECHAM5/JSBACH/MPI-OM). We perform long term quasi equilibrium simulations under pre-industrial, mid-Holocene (6000 years before present – yBP), and Eemian (125 000 yBP) orbital boundary conditions. Compared to pre-industrial climate, Eemian and Holocene temperatures show generally warmer conditions at higher and cooler conditions at lower latitudes. Changes in sea-ice cover, ocean heat transports, and atmospheric circulation patterns lead to pronounced regional heterogeneity. Over Europe, the warming is most pronounced over the north-eastern part in accordance with recent reconstructions for the Holocene. We attribute this warming to enhanced ocean circulation in the Nordic Seas and enhanced ocean-atmosphere heat flux over the Barents Shelf in conduction with retreat of sea ice and intensified winter storm tracks over northern Europe.
    Keywords: Abbreviation; Experiment; File format; File name; File size; Integrierte Analyse zwischeneiszeitlicher Klimadynamik; INTERDYNAMIK; Parameter; Uniform resource locator/link to model result file; Unit
    Type: Dataset
    Format: text/tab-separated-values, 100 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-10-25
    Description: The Northern Hemisphere mid-latitudes will be exposed to hydroclimatic risk in next coming decades because the subtropical expansion. However, it is not clear when the anthropogenic signal will emerge from the internal climate variability. For this purpose, we investigate the time of emergence (ToE) of the hemispheric and regional shift of northern subtropical margins in the Max Planck Institute Grand Ensemble. For several indicators, the ToE of the poleward shift of Northern subtropical margin will not occur by the end of the 21st century, neither at regional nor at hemispheric scale. The exceptions are the Mediterranean/Middle East and, to a lesser degree, Western Pacific, where the ToE would occur earlier. According to our results, given the fundamental role played by internal variability, trends of Northern Hemisphere subtropical poleward shift that have been identified over last decades in reanalyses cannot be considered as robust signals of anthropogenic climate change.
    Keywords: 551.6 ; Northern Hemisphere subtropics ; poleward shift ; MPI-ESM Grand Ensemble ; forced response ; natural variability ; time of emergence
    Language: English
    Type: map
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...