GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AWI_PerDyn; Permafrost Research (Periglacial Dynamics) @ AWI  (2)
Document type
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Schirrmeister, Lutz; Grigoriev, Mikhail N; Strauss, Jens; Grosse, Guido; Overduin, Pier Paul; Kohlodov, Aleksander; Guenther, Frank; Hubberten, Hans-Wolfgang (2018): Sediment characteristics of a thermokarst lagoon in the northeastern Siberian Arctic (Ivashkina Lagoon, Bykovsky Peninsula). arktos - The Journal of Arctic Geosciences, 4(1), https://doi.org/10.1007/s41063-018-0049-8
    Publication Date: 2023-03-07
    Description: We here present lithological, geochronological, and geochemical data from a core drilled in 1999 in the Ivashkina Lagoon on the Bykovsky Peninsula, Northeast Siberia.
    Keywords: AWI_PerDyn; Permafrost Research (Periglacial Dynamics) @ AWI
    Type: Dataset
    Format: application/zip, 8 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Overduin, Pier Paul; Liebner, Susanne; Knoblauch, Christian; Günther, Frank; Wetterich, Sebastian; Schirrmeister, Lutz; Hubberten, Hans-Wolfgang; Grigoriev, Mikhail N (2015): Methane oxidation following submarine permafrost degradation: Measurements from a central Laptev Sea shelf borehole. Journal of Geophysical Research: Biogeosciences, 120(5), 965-978, https://doi.org/10.1002/2014JG002862
    Publication Date: 2023-03-07
    Description: Submarine permafrost degradation has been invoked as a cause for recent observations of methane emissions from the seabed to the water column and atmosphere of the East Siberian shelf. Sediment drilled 52 m down from the sea ice in Buor Khaya Bay, central Laptev Sea revealed unfrozen sediment overlying ice-bonded permafrost. Methane concentrations in the overlying unfrozen sediment were low (mean 20 µM) but higher in the underlying ice-bonded submarine permafrost (mean 380 µM). In contrast, sulfate concentrations were substantially higher in the unfrozen sediment (mean 2.5 mM) than in the underlying submarine permafrost (mean 0.1 mM). Using deduced permafrost degradation rates, we calculate potential mean methane efflux from degrading permafrost of 120 mg/m**2 per year at this site. However, a drop of methane concentrations from 190 µM to 19 µM and a concomitant increase of methane d13C from -63 per mil to -35 per mil directly above the ice-bonded permafrost suggest that methane is effectively oxidized within the overlying unfrozen sediment before it reaches the water column. High rates of methane ebullition into the water column observed elsewhere are thus unlikely to have ice-bonded permafrost as their source.
    Keywords: AWI_PerDyn; Permafrost Research (Periglacial Dynamics) @ AWI
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...