GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ASFA_2015::H::Heat transport  (1)
  • Anthropogenic climate change  (1)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here for personal use, not for redistribution. The definitive version was published in Annual Review of Marine Science 8 (2016): 185-215, doi:10.1146/annurev-marine-052915-100829.
    Description: The ocean, a central component of Earth’s climate system, is changing. Given the global scope of these changes, highly accurate measurements of physical and biogeochemical properties need to be conducted over the full water column, spanning the ocean basins from coast to coast, and repeated every decade at a minimum, with a ship-based observing system. Since the late 1970s, when the Geochemical Ocean Sections Study (GEOSECS) conducted the first global survey of this kind, the World Ocean Circulation Experiment (WOCE) and Joint Global Ocean Flux Study (JGOFS), and now the Global Ocean Ship-based Hydrographic Investigations Program (GO-SHIP) have collected these “reference standard” data that allow quantification of ocean heat and carbon uptake, and variations in salinity, oxygen, nutrients, and acidity on basin scales. The evolving GO-SHIP measurement suite also provides new global information about dissolved organic carbon, a large bioactive reservoir of carbon.
    Description: Climate Observations Division of the U.S. NOAA Climate Program Office and NOAA Research; Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA10OAR4320148; U.S. National Science Foundation [OCE- 0223869; OCE-0752970; OCE-0825163; OCE-1434000; OCE 0752972; OCE-0752980; OCE-1232962; OCE-1155983; OCE-1436748]; U.S. CLIVAR Project Office; Global Environment and Marine Department, Japan Meteorological Agency; Australian Climate Change Science Program (Australian Department of Environment and CSIRO); U.K. Natural Environment Research Council; European Union’s FP7 grant agreement 264879 (CarboChange); Horizon 2020 grant agreement No 633211; ETH Zurich Switzerland.
    Keywords: Anthropogenic climate change ; Ocean temperature change ; Salinity change ; Ocean carbon cycle ; Ocean oxygen and nutrients ; Ocean chlorofluorocarbons ; Ocean circulation change ; Ocean mixing
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-05-19
    Description: Global mean surface warming has stalled since the end of the twentieth century1,2, but the net radiation imbalance at the top of the atmosphere continues to suggest an increasingly warming planet. This apparent contradiction has been reconciled by an anomalous heat flux into the ocean3–8, induced by a shift towards a La Niña-like state with cold sea surface temperatures in the eastern tropical Pacific over the past decade or so. A significant portion of the heat missing fromthe atmosphere is therefore expected to be stored in the Pacific Ocean. However, in situ hydrographic records indicate that Pacific Ocean heat content has been decreasing9. Here, we analyse observations along with simulations from a global ocean–sea ice model to track the pathway of heat. We find that the enhanced heat uptake by the Pacific Ocean has been compensated by an increased heat transport from the Pacific Ocean to the Indian Ocean, carried by the Indonesian throughflow. As a result, Indian Ocean heat content has increased abruptly, which accounts for more than 70% of the global ocean heat gain in the upper 700m during the past decade. We conclude that the Indian Ocean has become increasingly important in modulating global climate variability.
    Description: PDF is Advanced Online copy 18 May 2015
    Description: Published
    Keywords: Attribution ; Indonesian throughflow ; ASFA_2015::H::Heat budget ; ASFA_2015::H::Heat transport ; ASFA_2015::V::Volume transport ; ASFA_2015::O::Ocean-atmosphere system
    Repository Name: AquaDocs
    Type: Journal Contribution , Refereed
    Format: pp.445-449
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...