GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 57 (2010): 1460-1477, doi:10.1016/j.dsr2.2010.02.015.
    Description: We targeted the warm, subsurface waters of the Eastern Mediterranean Sea (EMS) to investigate processes that are linked to the chemical composition and cycling of dissolved organic carbon (DOC) in seawater. The apparent respiration of semi-labile DOC accounted for 27 ± 18% of oxygen consumption in EMS mesopelagic and bathypelagic waters; this value is higher than that observed in the bathypelagic open ocean, so the chemical signals that accompany remineralization of DOC may thus be more pronounced in this region. Ultrafiltered dissolved organic matter (UDOM) collected from four deep basins at depths ranging from 2 to 4350 m exhibited bulk chemical (1H-NMR) and molecular level (amino acid and monosaccharide) abundances, composition, and spatial distribution that were similar to previous reports, except for a sample collected in the deep waters of the N. Aegean Sea that had been isolated for over a decade. The amino acid component of UDOM was tightly correlated with apparent oxygen utilization and prokaryotic activity, indicating its relationship with remineralization processes that occur over a large range of timescales. Principal component analyses of relative mole percentages of monomers revealed that oxygen consumption and prokaryotic activity were correlated with variability in amino acid distributions but not well correlated with monosaccharide distributions. Taken together, this study elucidates key relationships between the chemical composition of DOM and heterotrophic metabolism.
    Description: TBM and AG acknowledge funding from the Hellenic GSRT/European Union (non-EU Grant No180) and SESAME Project (European Commission's Sixth Framework Program, EC Contract No GOCE-036949). TY was supported by the Japanese Society for the Promotion of Science (JSPS) Postdoctoral Fellowship for research abroad and DDC received a fellowship of the University of Groningen. Microbial laboratory work and molecular analyses were supported by a grant of the Earth and Life Science Division of the Dutch Science Foundation (ARCHIMEDES project, 835.20.023) to GJH. DJR and TBM were supported by grants from the Gordon and Betty Moore Foundation and from the C-MORE organization of NSF.
    Keywords: DOM ; Biogeochemical cycles ; Ultrafiltration ; AOU ; Microbial loop
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 8 (2017): 1786, doi:10.3389/fmicb.2017.01786.
    Description: Semi-labile dissolved organic matter (DOM) accumulates in surface waters of the oligotrophic ocean gyres and turns over on seasonal to annual timescales. This reservoir of DOM represents an important source of carbon, energy, and nutrients to marine microbial communities but the identity of the microorganisms and the biochemical pathways underlying the cycling of DOM remain largely uncharacterized. In this study we describe bacteria isolated from the North Pacific Subtropical Gyre (NPSG) near Hawaii that are able to degrade phosphonates associated with high molecular weight dissolved organic matter (HMWDOM), which represents a large fraction of semi-labile DOM. We amended dilution-to-extinction cultures with HMWDOM collected from NPSG surface waters and with purified HMWDOM enriched with polysaccharides bearing alkylphosphonate esters. The HMWDOM-amended cultures were enriched in Roseobacter isolates closely related to Sulfitobacter and close relatives of hydrocarbon-degrading bacteria of the Oceanospirillaceae family, many of which encoded phosphonate degradation pathways. Sulfitobacter cultures encoding C-P lyase were able to catabolize methylphosphonate and 2-hydroxyethylphosphonate, as well as the esters of these phosphonates found in native HMWDOM polysaccharides to acquire phosphorus while producing methane and ethylene, respectively. Conversely, growth of these isolates on HMWDOM polysaccharides as carbon source did not support robust increases in cell yields, suggesting that the constituent carbohydrates in HMWDOM were not readily available to these individual isolates. We postulate that the complete remineralization of HMWDOM polysaccharides requires more complex microbial inter-species interactions. The degradation of phosphonate esters and other common substitutions in marine polysaccharides may be key steps in the turnover of marine DOM.
    Description: Financial support for this work was provided by the National Science Foundation Center for Microbial Oceanography: Research and Education (award #EF0424599 to DK and ED), the National Science Foundation HOT program (OCE-1260164 to M. J. Church and DK), the Gordon and Betty Moore Foundation (grants #492.01 and #3777 to ED, #3298 to DR, and #3794 to DK), and the Simons Foundation (award ID 329108 to DK, DR, and ED). Additional support was provided by the Agouron Institute through a fellowship to OS.
    Keywords: Bacterial degradation ; Dissolved organic matter (DOM) ; Phosphonate metabolism ; C-P lyase ; Methane ; Ethylene ; Oligotrophic conditions
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Kiang, N. Y., Swingley, W. D., Gautam, D., Broddrick, J. T., Repeta, D. J., Stolz, J. F., Blankenship, R. E., Wolf, B. M., Detweiler, A. M., Miller, K. A., Schladweiler, J. J., Lindeman, R., & Parenteau, M. N. Discovery of chlorophyll d: isolation and characterization of a far-red cyanobacterium from the original site of manning and strain (1943) at Moss Beach, California. Microorganisms, 10(4), (2022): 819, https://doi.org/10.3390/microorganisms10040819.
    Description: We have isolated a chlorophyll-d-containing cyanobacterium from the intertidal field site at Moss Beach, on the coast of Central California, USA, where Manning and Strain (1943) originally discovered this far-red chlorophyll. Here, we present the cyanobacterium’s environmental description, culturing procedure, pigment composition, ultrastructure, and full genome sequence. Among cultures of far-red cyanobacteria obtained from red algae from the same site, this strain was an epiphyte on a brown macroalgae. Its Qyin vivo absorbance peak is centered at 704–705 nm, the shortest wavelength observed thus far among the various known Acaryochloris strains. Its Chl a/Chl d ratio was 0.01, with Chl d accounting for 99% of the total Chl d and Chl a mass. TEM imagery indicates the absence of phycobilisomes, corroborated by both pigment spectra and genome analysis. The Moss Beach strain codes for only a single set of genes for producing allophycocyanin. Genomic sequencing yielded a 7.25 Mbp circular chromosome and 10 circular plasmids ranging from 16 kbp to 394 kbp. We have determined that this strain shares high similarity with strain S15, an epiphyte of red algae, while its distinct gene complement and ecological niche suggest that this strain could be the closest known relative to the original Chl d source of Manning and Strain (1943). The Moss Beach strain is designated Acaryochloris sp. (marina) strain Moss Beach.
    Description: N.Y.K., M.N.P. and R.E.B. were supported by the NASA Virtual Planetary Laboratory team (VPL), which was funded under NASA Astrobiology Institute Cooperative Agreement Number NNA13AA93A, and Grant Number 80NSSC18K0829. This work also benefited from participation in the NASA Nexus for Exoplanet Systems Science (NExSS) research coordination network (RCN). W.D.S, N.Y.K. and M.N.P. were also supported by a NASA Exobiology grant No. 80NSSC19K0478. J.TB. was supported by the NASA Postdoctoral Program (NPP) award number NPP168014S. N.Y.K. received training support from the NASA Goddard Space Flight Center Training Office to take the Microbial Diversity course at the Marine Biological Laboratory, Woods Hole, MA, USA.
    Keywords: Chlorophyll d ; Acaryochloris ; Moss Beach ; Cyanobacteria ; Far-red photosynthesis ; Photosynthetic pigments ; Absorbance spectra ; Genome sequence
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...