GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ANT-XXI/3; AWI; Cell division rate; Cell size; Cell size decrease; Cell size decrease per division; Date/Time of event; Event label; Hand net; HN; Latitude of event; Longitude of event; Polarstern; Priority Programme 1158 Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; PS65/410-2; PS65/420-4; PS65/424-4; PS65 EIFEX; South Atlantic Ocean; Species; SPP1158; Strain  (1)
  • Alexandrium  (1)
Document type
Keywords
  • ANT-XXI/3; AWI; Cell division rate; Cell size; Cell size decrease; Cell size decrease per division; Date/Time of event; Event label; Hand net; HN; Latitude of event; Longitude of event; Polarstern; Priority Programme 1158 Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; PS65/410-2; PS65/420-4; PS65/424-4; PS65 EIFEX; South Atlantic Ocean; Species; SPP1158; Strain  (1)
  • Alexandrium  (1)
  • Aufsatzsammlung  (1)
  • Biotoxins  (1)
  • Global dispersion  (1)
  • +
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Fuchs, Nike; Scalco, Eleonora; Kooistra, W H C F; Assmy, Philipp; Montresor, Marina (2013): Genetic characterization and life cycle of the diatom Fragilariopsis kerguelensis. European Journal of Phycology, 48(4), 411-426, https://doi.org/10.1080/09670262.2013.849360
    Publication Date: 2023-10-28
    Description: The planktonic diatom Fragilariopsis kerguelensis plays an important role in the biogeochemical cycles of the Southern Ocean, where remains of its frustules form the largest deposit of biogenic silica anywhere in the world. We assessed the genetic identity of 26 strains, from cells collected at various sites in the Southern Ocean, using three molecular markers, LSU and ITS rDNA and rbcL. The LSU sequences were identical among the tested strains, ITS sequences were highly similar, and only one base pair difference was detected among the rbcL sequences. These results, together with a large number of successful mating experiments demonstrated that the strains belong to a single biological species. We investigated the mating system and life cycle traits of F. kerguelensis. Cell size diminished gradually in clonal strains. Gamete formation only occurred when strains of opposite mating type - within a cell size range of 7-36 µm - were mixed together. Two binucleate gametes were formed in each gametangium and gamete conjugation produced a zygote that had four nuclei and was surrounded by thin siliceous scales. Two out of the four nuclei subsequently degenerated and the zygote expanded to form an auxospore surrounded by a transverse and a longitudinal perizonium. Staining with the fluorochrome PDMPO provided for the first time a clear demonstration that the longitudinal perizonium is formed after auxospore expansion is complete. Initial cells produced within the mature auxospores were 78-101 µm in length. Various authors have shown that the average valve size of F. kerguelensis varies in sediment samples collected in regions and seasons with different primary production regimes and this parameter has thus been proposed as a biological proxy for palaeo-productivity. A better understanding of the life cycle of F. kerguelensis should help the design of future investigations aimed at testing the link between cell size distribution in the natural environment and the role that environmental factors might have in the regulation of population cell size.
    Keywords: ANT-XXI/3; AWI; Cell division rate; Cell size; Cell size decrease; Cell size decrease per division; Date/Time of event; Event label; Hand net; HN; Latitude of event; Longitude of event; Polarstern; Priority Programme 1158 Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; PS65/410-2; PS65/420-4; PS65/424-4; PS65 EIFEX; South Atlantic Ocean; Species; SPP1158; Strain
    Type: Dataset
    Format: text/tab-separated-values, 42 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Harmful Algae 14 (2012): 10-35, doi:10.1016/j.hal.2011.10.012.
    Description: The dinoflagellate genus Alexandrium is one of the major harmful algal bloom (HAB) genera with respect to the diversity, magnitude and consequences of blooms. The ability of Alexandrium to colonize multiple habitats and to persist over large regions through time is testimony to the adaptability and resilience of this group of species. Three different families of toxins, as well as an as yet incompletely characterized suite of allelochemicals are produced among Alexandrium species. Nutritional strategies are equally diverse, including the ability to utilize a range of inorganic and organic nutrient sources, and feeding by ingestion of other organisms. Many Alexandrium species have complex life histories that include sexuality and often, but not always, cyst formation, which is characteristic of a meroplanktonic life strategy and offers considerable ecological advantages. Due to the public health and ecosystem impacts of Alexandrium blooms, the genus has been extensively studied, and there exists a broad knowledge base that ranges from taxonomy and phylogeny through genomics and toxin biosynthesis to bloom dynamics and modeling. Here we present a review of the genus Alexandrium, focusing on the major toxic and otherwise harmful species.
    Description: Support to DMA was provided by the National Institute of Environmental Health Sciences (1-P50-ES012742) and the National Science Foundation through the Woods Hole Center for Oceans and Human Health (OCE-0430724), and by NOAA Grants NA09NOS4780193, NA06OAR4170021 and NA06NOS4780245. Research funding to ADC and previously to TJA was furnished under the PACES Programme (Coast WP2) from the Helmholtz Society initiative Earth and Environment. Support to TJA was obtained by the research funding program LOEWE (Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz) of Hesse’s Ministry of Higher Education, Research, and the Arts. Support to EM and YC was provided by grants from the French National Programme “Ecosphère Continentale et Côtière-EC2CO and from the “Fondation pour la Recherche sur la Biodiversité-INVALEX project (AAP-IN-2009- 036).
    Keywords: Alexandrium ; Harmful algal blooms ; HAB ; Biotoxins ; Public health ; Global dispersion
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...