GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AIRICA analyzer (Miranda); Australia; Carbon, inorganic, dissolved; Carbon, organic, dissolved; Clarence_Estuary; DEPTH, sediment/rock; DEPTH, water; estuaries; EXP; Experiment; LDO-probe; Ocean acidification; Oxygen saturation; pH; pH probe; Replicates; Salinity; SALINO; Salinometer; sediment; Surface area; Temperature, water; Temperature sensor; Time in minutes; Time point, descriptive; TOC analyser, Aurora 1030W; Treatment; Volume; warming  (1)
  • ARK-XXVII/1; BIOACID; Biological Impacts of Ocean Acidification; BONGO; Bongo net; Carbon content per individual; Day of experiment; Event label; Individuals; KOSMOS_2011_Bergen; Length; MESO; Mesocosm experiment; Nitrogen content per individual; North Greenland Sea; Polarstern; PS80; PS80/091-2; Raunefjord; Sample code/label; SOPRAN; Species; Surface Ocean Processes in the Anthropocene; Treatment  (1)
  • Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Azores_OA; Bicarbonate ion; Bicarbonate ion, standard deviation; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Calcification/Dissolution; Calcite saturation state; Calcite saturation state, standard deviation; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbon, inorganic, particulate; Carbon, inorganic, particulate, per cell; Carbon, organic, particulate; Carbon, organic, particulate, per cell; Carbon, organic, particulate, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard deviation; Chromista; Coast and continental shelf; Emiliania huxleyi; Event label; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gran_Canaria; Growth; Growth/Morphology; Growth rate; Growth rate, standard deviation; Haptophyta; Laboratory experiment; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Particulate inorganic carbon, production, standard deviation; Particulate inorganic carbon/particulate organic carbon ratio; Particulate inorganic carbon/particulate organic carbon ratio, standard deviation; Particulate inorganic carbon per cell, standard deviation; Particulate inorganic carbon production per cell; Particulate organic carbon, production, standard deviation; Particulate organic carbon production per cell; Pelagos; pH; pH, standard deviation; Phytoplankton; Potentiometric; Potentiometric titration; Primary production/Photosynthesis; Raunefjord_OA; Salinity; Single species; Site; Species, unique identification; Species, unique identification (Semantic URI); Species, unique identification (URI); Strain; Temperate; Temperature, water; Type of study
Document type
Keywords
Publisher
Years
  • 1
    Publication Date: 2024-01-02
    Description: Dissolved organic/inorganic carbon and oxygen fluxes from whole sediment core incubations subject to temperature and ocean acidification manipulations. Estuaries make a disproportionately large contribution of dissolved organic carbon (DOC) to the global carbon cycle, but it is unknown how this will change under a future climate. As such, the response of DOC fluxes from microbially dominated unvegetated sediments to individual and combined future climate stressors of warming (from Δ-3 °C to Δ+5 °C on ambient mean temperatures) and ocean acidification (OA, ~2 times the current partial pressure of CO2, pCO2) was investigated ex situ. Warming alone increased sediment heterotrophy, resulting in a proportional increase in sediment DOC uptake, with sediments becoming net sinks of DOC (3.5 to 8.8 mmol-C m-2 d-1) at warmer temperatures (Δ+3 °C and Δ+5 °C, respectively). This temperature response changed under OA conditions, with sediments becoming more autotrophic and a greater sink of DOC (1 to 4 times greater than under current-pCO2). This response was attributed to the stimulation of heterotrophic bacteria with the autochthonous production of labile organic matter by microphytobenthos. Extrapolating these results to the global area of unvegetated subtidal estuarine sediments, the future climate of warming (Δ+3 °C) and OA may decrease the estuarine export of DOC by ~80 % (~150 Tg-C yr-1) and have a disproportionately large impact on the global DOC budget.
    Keywords: AIRICA analyzer (Miranda); Australia; Carbon, inorganic, dissolved; Carbon, organic, dissolved; Clarence_Estuary; DEPTH, sediment/rock; DEPTH, water; estuaries; EXP; Experiment; LDO-probe; Ocean acidification; Oxygen saturation; pH; pH probe; Replicates; Salinity; SALINO; Salinometer; sediment; Surface area; Temperature, water; Temperature sensor; Time in minutes; Time point, descriptive; TOC analyser, Aurora 1030W; Treatment; Volume; warming
    Type: Dataset
    Format: text/tab-separated-values, 1053 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-01
    Keywords: ARK-XXVII/1; BIOACID; Biological Impacts of Ocean Acidification; BONGO; Bongo net; Carbon content per individual; Day of experiment; Event label; Individuals; KOSMOS_2011_Bergen; Length; MESO; Mesocosm experiment; Nitrogen content per individual; North Greenland Sea; Polarstern; PS80; PS80/091-2; Raunefjord; Sample code/label; SOPRAN; Species; Surface Ocean Processes in the Anthropocene; Treatment
    Type: Dataset
    Format: text/tab-separated-values, 2643 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...