GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AHP; AHS; AKO; Allele; BAR; Code; Date/Time of event; DIVER; ECK; ESH; Event label; FLB; FSD; GEO; GLT; GRO; GWZ; HEL; HLG; HON; Identification; KAP; LATITUDE; Location; LONGITUDE; MAH; Mussels_Aarhus; Mussels_Ahrenshoop; Mussels_Askoe; Mussels_Barhoeft; Mussels_Dranske; Mussels_Eckernfoerde; Mussels_Fehmarnsund; Mussels_Flensburg; Mussels_Gelting; Mussels_Gollwitz; Mussels_Groemitz; Mussels_Hel; Mussels_Helgoland; Mussels_Kappeln; Mussels_KielFjord_Eastshore; Mussels_KielFjord_GEOMAR; Mussels_KielFjord_Hoern; Mussels_KielFjord_ShipMuseum; Mussels_Maasholm; Mussels_PennCove; Mussels_Steinbeck; Mussels_Tjaernoe; Mussels_Usedom; Mussels_Warnemuende; Mussels_Wendtorf; PCO; RUD; Sample code/label; Sampling by diver; SMU; STB; TJ; USE; WMU; WNF  (1)
  • Acid-base regulation; Alkalinity, total; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Bicarbonate ion; BIOACID; Biological Impacts of Ocean Acidification; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calcite saturation state, standard deviation; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Echinodermata; Figure; Fluorescence; Fluorescence, standard deviation; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Laboratory experiment; Molecular mass; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, extracellular; pH, intracellular; pH, standard deviation; Ratio; Recovery; Replicate; Salinity; Salinity, standard deviation; Single species; Slope inclination; Species; Strongylocentrotus droebachiensis; Temperate; Temperature, water; Temperature, water, standard deviation; Time in minutes; Time in seconds; Treatment; Zooplankton  (1)
  • Acid-base regulation; Alkalinity, total; Animalia; Aragonite saturation state; Baltic Sea; Benthic animals; Benthos; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcification/Dissolution; Calcite saturation state; Calcium; Calcium per individual; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; delta; Experiment; Fluorescence; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Laboratory experiment; Mollusca; Mytilus edulis; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Registration number of species; Replicate; Salinity; Shell length; Shell length, standard deviation; Single species; Species; Temperate; Temperature, water; Time in hours; Type; Uniform resource locator/link to reference  (1)
Document type
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Stuckas, Heiko; Knöbel, Loreen; Schade, Hanna; Breusing, Corinna; Hinrichsen, Hans-Harald; Bartel, Anja; Langguth, Klaudia; Melzner, Frank (2017): Combining hydrodynamic modelling with genetics: Can passive larval drift shape the genetic structure of Baltic Mytilus populations? Molecular Ecology, https://doi.org/10.1111/mec.14075
    Publication Date: 2023-01-13
    Description: While secondary contact between Mytilus edulis and M. trossulus in North America results in mosaic hybrid zone formation, both species form a hybrid swarm in the Baltic. Despite pervasive gene flow, Baltic Mytilus species maintain substantial genetic and phenotypic differentiation. Exploring mechanisms underlying the contrasting genetic composition in Baltic Mytilus species will allow insights into processes such as speciation or adaptation to extremely low salinity. Previous studies in the Baltic indicated that only weak interspecific reproductive barriers exist and discussed the putative role of adaptation to environmental conditions. Using a combination of hydrodynamic modelling and multilocus genotyping we investigate how oceanographic conditions influence passive larval dispersal and hybrid swarm formation in the Baltic. By combining our analyses with previous knowledge we show a genetic transition of Baltic Mytilus species along longitude 12°-13°E, i.e. a virtual line between Malmö (Sweden) and Stralsund (Germany). Although larval transport only occurs over short distances (10-30 km), limited larval dispersal could not explain the position of this genetic transition zone. Instead, the genetic transition zone is located at the area of maximum salinity change (15 to 10 psu). Thus, we argue that selection results in weak reproductive barriers and local adaptation. This scenario could maintain genetic and phenotypic differences between Baltic Mytilus species despite pervasive introgressive hybridization.
    Keywords: AHP; AHS; AKO; Allele; BAR; Code; Date/Time of event; DIVER; ECK; ESH; Event label; FLB; FSD; GEO; GLT; GRO; GWZ; HEL; HLG; HON; Identification; KAP; LATITUDE; Location; LONGITUDE; MAH; Mussels_Aarhus; Mussels_Ahrenshoop; Mussels_Askoe; Mussels_Barhoeft; Mussels_Dranske; Mussels_Eckernfoerde; Mussels_Fehmarnsund; Mussels_Flensburg; Mussels_Gelting; Mussels_Gollwitz; Mussels_Groemitz; Mussels_Hel; Mussels_Helgoland; Mussels_Kappeln; Mussels_KielFjord_Eastshore; Mussels_KielFjord_GEOMAR; Mussels_KielFjord_Hoern; Mussels_KielFjord_ShipMuseum; Mussels_Maasholm; Mussels_PennCove; Mussels_Steinbeck; Mussels_Tjaernoe; Mussels_Usedom; Mussels_Warnemuende; Mussels_Wendtorf; PCO; RUD; Sample code/label; Sampling by diver; SMU; STB; TJ; USE; WMU; WNF
    Type: Dataset
    Format: text/tab-separated-values, 6267 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Stumpp, Meike; Hu, Marian Y; Melzner, Frank; Gutowska, Magdalena A; Dorey, Narimane; Himmerkus, Nina; Holtmann, Wiebke C; Dupont, Sam; Thorndyke, Mike; Bleich, Markus (2012): Acidified seawater impacts sea urchin larvae pH regulatory systems relevant for calcification. Proceedings of the National Academy of Sciences, 109(44), 18192-18197, https://doi.org/10.1073/pnas.1209174109
    Publication Date: 2024-03-15
    Description: Calcifying echinoid larvae respond to changes in seawater carbonate chemistry with reduced growth and developmental delay. To date, no information exists on how ocean acidification acts on pH homeostasis in echinoderm larvae. Understanding acid-base regulatory capacities is important because intracellular formation and maintenance of the calcium carbonate skeleton is dependent on pH homeostasis. Using H(+)-selective microelectrodes and the pH-sensitive fluorescent dye BCECF, we conducted in vivo measurements of extracellular and intracellular pH (pH(e) and pH(i)) in echinoderm larvae. We exposed pluteus larvae to a range of seawater CO(2) conditions and demonstrated that the extracellular compartment surrounding the calcifying primary mesenchyme cells (PMCs) conforms to the surrounding seawater with respect to pH during exposure to elevated seawater pCO(2). Using FITC dextran conjugates, we demonstrate that sea urchin larvae have a leaky integument. PMCs and spicules are therefore directly exposed to strong changes in pH(e) whenever seawater pH changes. However, measurements of pH(i) demonstrated that PMCs are able to fully compensate an induced intracellular acidosis. This was highly dependent on Na(+) and HCO(3)(-), suggesting a bicarbonate buffer mechanism involving secondary active Na(+)-dependent membrane transport proteins. We suggest that, under ocean acidification, maintained pH(i) enables calcification to proceed despite decreased pH(e). However, this probably causes enhanced costs. Increased costs for calcification or cellular homeostasis can be one of the main factors leading to modifications in energy partitioning, which then impacts growth and, ultimately, results in increased mortality of echinoid larvae during the pelagic life stage.
    Keywords: Acid-base regulation; Alkalinity, total; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Bicarbonate ion; BIOACID; Biological Impacts of Ocean Acidification; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calcite saturation state, standard deviation; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Echinodermata; Figure; Fluorescence; Fluorescence, standard deviation; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Laboratory experiment; Molecular mass; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, extracellular; pH, intracellular; pH, standard deviation; Ratio; Recovery; Replicate; Salinity; Salinity, standard deviation; Single species; Slope inclination; Species; Strongylocentrotus droebachiensis; Temperate; Temperature, water; Temperature, water, standard deviation; Time in minutes; Time in seconds; Treatment; Zooplankton
    Type: Dataset
    Format: text/tab-separated-values, 41045 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-15
    Description: Understanding mollusk calcification sensitivity to ocean acidification (OA) requires a better knowledge of calcification mechanisms. Especially in rapidly calcifying larval stages, mechanisms of shell formation are largely unexplored—yet these are the most vulnerable life stages. Here we find rapid generation of crystalline shell material in mussel larvae. We find no evidence for intracellular CaCO3 formation, indicating that mineral formation could be constrained to the calcifying space beneath the shell. Using microelectrodes we show that larvae can increase pH and [CO3]2−beneath the growing shell, leading to a ~1.5-fold elevation in calcium carbonate saturation state (Omega arag). Larvae exposed to OA exhibit a drop in pH, [CO3]2− and Omega arag at the site of calcification, which correlates with decreased shell growth, and, eventually, shell dissolution. Our findings help explain why bivalve larvae can form shells under moderate acidification scenarios and provide a direct link between ocean carbonate chemistry and larval calcification rate.
    Keywords: Acid-base regulation; Alkalinity, total; Animalia; Aragonite saturation state; Baltic Sea; Benthic animals; Benthos; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcification/Dissolution; Calcite saturation state; Calcium; Calcium per individual; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; delta; Experiment; Fluorescence; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Laboratory experiment; Mollusca; Mytilus edulis; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Registration number of species; Replicate; Salinity; Shell length; Shell length, standard deviation; Single species; Species; Temperate; Temperature, water; Time in hours; Type; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 13036 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...