GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AGE; Alkenone, unsaturation index UK'37; alkenone SST; Calculated from UK'37 (Müller et al, 1998); Core; CORE; Cyprus; Height; Sample ID; Sea surface temperature  (1)
  • Lipid biomarkers  (1)
Document type
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Athanasiou, Maria; Bouloubassi, Ioanna; Gogou, Alexandra; Klein, Vincent; Dimiza, Margarita D; Parinos, Constantine; Skampa, Elisavet; Triantaphyllou, Maria (2017): Sea surface temperatures and environmental conditions during the “warm Pliocene” interval (~ 4.1–3.2 Ma) in the Eastern Mediterranean (Cyprus). Global and Planetary Change, 150, 46-57, https://doi.org/10.1016/j.gloplacha.2017.01.008
    Publication Date: 2023-01-30
    Description: Organic geochemical (alkenones) and micropaleontological (nannofossil) data from the Pissouri South section (PPS) in the island of Cyprus provided a detailed description of the paleoclimatic (sea surface temperature- SST) and paleoenvironmental conditions during the "warm Pliocene" (c. 4.1-3.25Ma) in the EasternMediterranean. We found that the suite of sapropel events recorded in the studied interval took place under conditions of increased SST, enhanced water column stratification and development of a productive deep chlorophyll maximum (DCM), as witnessed by the dominance of Florisphaera profunda species. Such conditions are similar to those prevailing during Quaternary sapropel formation, triggered by freshwater discharges from the N. African margin due to insolation-driven intensification of the African monsoon. The absence of F. profunda in Pliocene sapropels fromcentralMediterranean records highlights the sensitive response of the eastern basin to freshwater perturbations. Comparisons between alkenone and calcareous nannofossil assemblage patterns infer Pseudoemiliania lacunosa as the main alkenone producer in sapropel layers; yet Reticulofenestra spp. contribution cannot be ruled out. The first Pliocene alkenone-SST record in the E. Mediterranean presented here documents the "warm Pliocene" period (~4.1-3.25 Ma) characterized by mean SST of c. 26 °C. Distinct SST minima at ~3.9 Ma, 3.58 Ma and between 3.34 and 3.31 Ma, correspond to the MIS Gi16, MIS MG12 and MIS M2 global cooling episodes, before the onset of the Northern Hemisphere glaciation. Our findings imply that the peak of the MIS M2 cooling in the Eastern Mediterranean may be up to ~40 kyrs older than the age attributed before to benthic stable oxygen isotopes records of this event.
    Keywords: AGE; Alkenone, unsaturation index UK'37; alkenone SST; Calculated from UK'37 (Müller et al, 1998); Core; CORE; Cyprus; Height; Sample ID; Sea surface temperature
    Type: Dataset
    Format: text/tab-separated-values, 260 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Pedrosa-Pamies, R., Parinos, C., Sanchez-Vidal, A., Calafat, A., Canals, M., Velaoras, D., Mihalopoulos, N., Kanakidou, M., Lampadariou, N., & Gogou, A. Atmospheric and oceanographic forcing impact particle flux composition and carbon sequestration in the eastern Mediterranean Sea: a three-year time-series study in the deep Ierapetra Basin. Frontiers in Earth Science, 9, (2021): 591948, https://doi.org/10.3389/feart.2021.591948.
    Description: Sinking particles are a critical conduit for the export of organic material from surface waters to the deep ocean. Despite their importance in oceanic carbon cycling, little is known about the biotic composition and seasonal variability of sinking particles reaching abyssal depths. Herein, sinking particle flux data, collected in the deep Ierapetra Basin for a three-year period (June 2010 to June 2013), have been examined at the light of atmospheric and oceanographic parameters and main mass components (lithogenic, opal, carbonates, nitrogen, and organic carbon), stable isotopes of particulate organic carbon (POC) and source-specific lipid biomarkers. Our aim is to improve the current understanding of the dynamics of particle fluxes and the linkages between atmospheric dynamics and ocean biogeochemistry shaping the export of organic matter in the deep Eastern Mediterranean Sea. Overall, particle fluxes showed seasonality and interannual variability over the studied period. POC fluxes peaked in spring April–May 2012 (12.2 mg m−2 d−1) related with extreme atmospheric forcing. Summer export was approximately fourfold higher than mean wintertime, fall and springtime (except for the episodic event of spring 2012), fueling efficient organic carbon sequestration. Lipid biomarkers indicate a high relative contribution of natural and anthropogenic, marine- and land-derived POC during both spring (April–May) and summer (June–July) reaching the deep-sea floor. Moreover, our results highlight that both seasonal and episodic pulses are crucial for POC export, while the coupling of extreme weather events and atmospheric deposition can trigger the influx of both marine labile carbon and anthropogenic compounds to the deep Levantine Sea. Finally, the comparison of time series data of sinking particulate flux with the corresponding biogeochemical parameters data previously reported for surface sediment samples from the deep-sea shed light on the benthic–pelagic coupling in the study area. Thus, this study underscores that accounting the seasonal and episodic pulses of organic carbon into the deep sea is critical in modeling the depth and intensity of natural and anthropogenic POC sequestration, and for a better understanding of the global carbon cycle.
    Description: This research was supported by the REDECO (CTM2008-04973-E/MAR) and PERSEUS (GA 287600) projects. We further acknowledge support by the projects PANACEA—‘PANhellenic infrastructure for Atmospheric Composition and climatE chAnge’ (MIS 5021516) and ENIRISST—‘Intelligent Research Infrastructure for Shipping, Supply Chain, Transport and Logistics’ (MIS 5027930), which are implemented under the Action “Reinforcement of the Research and Innovation Infrastructure,” funded by the Operational Program “Competitiveness, Entrepreneurship and Innovation” (NSRF 2014-2020) and co-financed by Greece and EU; and by the Action “National Νetwork on Climate Change and its Impacts - Climpact” which is implemented under the sub-project 3 of the project “Infrastructure of national research networks in the fields of Precision Medicine, Quantum Technology and Climate Change,” funded by the Public Investment Program of Greece, General Secretary of Research and Technology/Ministry of Development and Investments.” Researchers from GRC Geociències Marines benefited from a Grups de Recerca Consolidats grant (2017 SGR 315) by Generalitat de Catalunya autonomous government.
    Keywords: Sinking particle fluxes ; Carbon cycle ; Lipid biomarkers ; Atmospheric forcing ; Eastern mediterranean sea ; Surface sediment ; Deep ocean ; Particulate organic carbon
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...