GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-07-03
    Description: The Klyuchevskoy Volcanic Group is a cluster of the world's most active subduction volcanoes, situated on the Kamchatka Peninsula, Russia. The volcanoes lie in an unusual off‐arc position within the Central Kamchatka Depression (CKD), a large sedimentary basin whose origin is not fully understood. Many gaps also remain in the knowledge of the crustal magmatic plumbing system of these volcanoes. We conducted an ambient noise surface wave tomography, to image the 3‐D shear wave velocity structure of the Klyuchevskoy Volcanic Group and CKD within the surrounding region. Vertical component cross correlations of the continuous seismic noise are used to measure interstation Rayleigh wave group and phase traveltimes. We perform a two‐step surface wave tomography to model the 3‐D Vsv velocity structure. For each inversion stage we use a transdimensional Bayesian Monte Carlo approach, with coupled uncertainty propagation. This ensures that our model provides a reliable 3‐D velocity image of the upper 15 km of the crust, as well as a robust assessment of the uncertainty in the observed structure. Beneath the active volcanoes, we image small slow velocity anomalies at depths of 2–5 km but find no evidence for magma storage regions deeper than 5 km—noting the 15 km depth limit of the model. We also map two clearly defined sedimentary layers within the CKD, revealing an extensive 8 km deep sedimentary accumulation. This volume of sediments is consistent with the possibility that the CKD was formed as an Eocene‐Pliocene fore‐arc regime, rather than by recent (〈2 Ma) back‐arc extension.
    Description: Plain Language Summary: The Klyuchevskoy Volcanic Group is a cluster of 13 volcanoes on the Kamchatkan corner of the Pacific ring of fire. The volcanoes regularly produce large eruptions, but good knowledge of the magma plumbing system beneath the surface is still lacking. Why the Klyuchevskoy Volcanic Group volcanoes lie in the location they do, in a large low‐lying depression, is also unexplained. We undertook a seismic experiment and used the data to produce a 3‐D velocity image of the subsurface beneath the volcanoes and the depression. We found that small regions of slow seismic velocity are located beneath the active volcanoes, at 2–5 km depth below sea level. This slower velocity is probably caused by magma lying within the porous fracture spaces in this rock. The seismic velocities are much faster beneath the dormant volcanoes, suggesting they have no magma beneath them. With our velocity image, we also find that the Central Kamchatka Depression is very deep, filled with over 8 km of sediments. This supports an idea that the sediments accumulated as a fore‐arc basin over many millions of years, since 40 Ma, when the active line of volcanoes was found 100 km to the west.
    Description: Key Points: Three‐dimensional shear velocity structure of the Klyuchevskoy area was determined using coupled transdimensional Monte Carlo inversions. Slow velocity anomalies suggest magma storage beneath active volcanoes at 2–5 km depth (below sea level) but not in the midcrust. Sediments filling the Central Kamchatka Depression are 8 km deep, consistent with an origin of the depression as a fore‐arc basin.
    Description: European Union Horizon 2020 Research and Innovation Programme http://dx.doi.org/10.13039/501100007601
    Description: Russian Ministry of Education and Science http://dx.doi.org/10.13039/501100003443
    Description: Alexander von Humboldt Foundation http://dx.doi.org/10.13039/100005156
    Keywords: 551.1 ; tomography ; Central Kamchatka Depression ; transdimensional ; Bayesian ; ambient noise ; Klyuchevskoy Volcanic Group
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-07-03
    Description: We study the crustal structure of Sri Lanka by analyzing data from a temporary seismic network deployed in 2016–2017 to shed light on the amalgamation process from a geophysical perspective. Rayleigh wave phase dispersion curves from ambient noise cross correlation and receiver functions were jointly inverted using a transdimensional Bayesian approach. The Moho depths in Sri Lanka range between 30 and 40 km, with the thickest crust (38–40 km) beneath the central Highland Complex (HC). The thinnest crust (30–35 km) is found along the west coast, which experienced crustal thinning associated with the formation of the Mannar Basin. VP/VS ratios lie within a range of 1.60–1.82 and predominantly favor a felsic to intermediate bulk crustal composition with a significant silica content of the rocks. A major intracrustal (18–27 km), slightly westward dipping (∼4.3°) interface with high VS (∼4 km/s) underneath is prominent in the central HC, continuing into the western Vijayan Complex (VC). The discontinuity might have been part of the respective units prior to the collision and could be an indicator for the proposed tilting of the Wanni Complex/HC crustal sections. It might also be related to the deep crustal HC/VC thrust contact with the VC as an indenting promontory of high VS. A low‐velocity zone in the central HC could have been caused by fluid influx generated by the thrusting process.
    Description: Key Points: Sri Lanka has mostly isostatically compensated 30–40 km thick crust. VP/VS ratios are between 1.60 and 1.82 and predominantly favor a felsic to intermediate bulk crustal composition. A midcrustal westward dipping interface could be related to the thrust contact between the Highland Complex and the Vijayan Complex.
    Keywords: 551.1 ; 551.8 ; Sri Lanka ; crustal structure
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...