GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 551.46  (1)
  • Temperature  (1)
Document type
Keywords
Years
  • 1
    Publication Date: 2021-07-21
    Description: This study presents recent observations to quantify oceanic heat fluxes along the continental slope of the Eurasian part of the Arctic Ocean, in order to understand the dominant processes leading to the observed along‐track heat loss of the Arctic Boundary Current (ABC). We investigate the fate of warm Atlantic Water (AW) along the Arctic Ocean continental margin of the Siberian Seas based on 11 cross‐slope conductivity, temperature, depth transects and direct heat flux estimates from microstructure profiles obtained in summer 2018. The ABC loses on average O(108) J m−2 per 100 km during its propagation along the Siberian shelves, corresponding to an average heat flux of 47 W m−2 out of the AW layer. The measured vertical heat flux on the upper AW interface of on average 10 W m−2 in the deep basin, and 3.7 W m−2 above the continental slope is larger than previously reported values. Still, these heat fluxes explain less than 20% of the observed heat loss within the boundary current. Heat fluxes are significantly increased in the turbulent near‐bottom layer, where AW intersects the continental slope, and at the lee side of a topographic irregularity. This indicates that mixing with ambient colder water along the continental margins is an important contribution to AW heat loss. Furthermore, the cold halocline layer receives approximately the same amount of heat due to upward mixing from the AW, compared to heat input from the summer‐warmed surface layer above. This underlines the importance of both surface warming and increased vertical mixing in a future ice‐free Arctic Ocean in summer.
    Description: Plain Language Summary: Warm water from the Atlantic Ocean enters the Arctic Ocean through the Barents Sea and the Fram Strait, between Greenland and Norway, and directly influences the formation of sea ice: When the Atlantic Water (AW) is located close to the ocean's surface, as is the case shortly after its inflow in the Barents Sea, sea ice melts and new sea ice formation is hindered. This is why the Barents Sea is often ice free, even in winter. Further along the pathway, in the Laptev and East Siberian Sea study region, the AW gradually cools and dives down to deeper layers. In order to quantify the cooling and to understand how and where it happens, we measured vertical profiles of temperature and heat fluxes along a 2,500 km long part of the AW pathway. Based on these measurements, we found that the heat loss mainly occurs by mixing of warm AW with ambient cold water above the continental slope, in particular in the highly energetic region near the sea floor.
    Description: Key Points: The Atlantic Water (AW) transported in the Arctic Boundary Current loses O(108)  J m−2 per 100 km during its translation along the Siberian shelves Heat fluxes are larger than previously reported values, but too small to account for this heat loss, indicating the importance of boundary mixing The heat input from the underlying AW layer to the cold halocline is of similar magnitude to the heat input from the warm surface layer above
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: NSF | GEO | Division of Ocean Sciences http://dx.doi.org/10.13039/100000141
    Keywords: 551.46 ; Arctic Boundary Current ; Arctic Ocean ; heat flux ; Laptev Sea ; mixing ; turbulence
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2010. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 40 (2010): 2743–2756, doi:10.1175/2010JPO4339.1.
    Description: Analysis of modern and historical observations demonstrates that the temperature of the intermediate-depth (150–900 m) Atlantic water (AW) of the Arctic Ocean has increased in recent decades. The AW warming has been uneven in time; a local 1°C maximum was observed in the mid-1990s, followed by an intervening minimum and an additional warming that culminated in 2007 with temperatures higher than in the 1990s by 0.24°C. Relative to climatology from all data prior to 1999, the most extreme 2007 temperature anomalies of up to 1°C and higher were observed in the Eurasian and Makarov Basins. The AW warming was associated with a substantial (up to 75–90 m) shoaling of the upper AW boundary in the central Arctic Ocean and weakening of the Eurasian Basin upper-ocean stratification. Taken together, these observations suggest that the changes in the Eurasian Basin facilitated greater upward transfer of AW heat to the ocean surface layer. Available limited observations and results from a 1D ocean column model support this surmised upward spread of AW heat through the Eurasian Basin halocline. Experiments with a 3D coupled ice–ocean model in turn suggest a loss of 28–35 cm of ice thickness after 50 yr in response to the 0.5 W m−2 increase in AW ocean heat flux suggested by the 1D model. This amount of thinning is comparable to the 29 cm of ice thickness loss due to local atmospheric thermodynamic forcing estimated from observations of fast-ice thickness decline. The implication is that AW warming helped precondition the polar ice cap for the extreme ice loss observed in recent years.
    Description: This study was supported by JAMSTEC (IP and VI), NOAA (IP, VI, and ID), NSF (IP,VA,VI, ID, JT, andMS),NASA(IP andVI), BMBF (ID), and UK NERC (SB) grants.
    Keywords: Arctic ; Forcing ; Temperature ; Sea ice ; Heating ; Coupled models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...