GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-10-01
    Description: The paper describes an update of the GECCO (German contribution to the Estimating the Circulation and Climate of the Ocean project) ocean synthesis, now in its version 3, and provides an evaluation of the results with assimilated and independent data. GECCO3 covers the 71-year period 1948–2018 and differs from its predecessor by returning to a single assimilation window instead of partitioning the period in 5-year-long overlapping windows which was previously necessary to yield convergence. A solution to the convergence problem is presented. GECCO3 is intended to be used for the initialization of coupled climate models and is configured for the higher-resolution version of the earth system model (MPI-ESM) developed at the Max Planck Institute for Meteorology. It uses the bathymetry and grid of the MPI-ESM with quasi-uniform resolution of 0.4°, thereby providing the first global eddy-permitting synthesis based on the adjoint method. The synthesis additionally features the estimation of various mixing parameters and can regionally choose between explicit or parametrized eddy fluxes. Except for the altimeter data in tropical regions, GECCO3 is in better agreement with the assimilated data than GECCO2. The improvements relative to the in situ data partly result from the much larger amount of Argo data, which show lower model–data differences. Global heat content changes are in good agreement with recent estimates, but show uptake almost exclusively in the top 700 m. An alternative version of GECCO3, created by starting from different first-guess control parameters, was used to evaluate the uncertainty of the estimated parameters and state due to lack of convergence. This estimate suggests a large uncertainty related to the uptake of heat into the lower layers, while estimates of mean meridional transport of heat and freshwater are not affected.
    Keywords: 551.6 ; 551.46 ; climate model initialization ; eddy-permitting ocean synthesis ; heat content change ; ocean transports
    Language: English
    Type: map
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-01-26
    Description: Regional freshwater content (FWC) changes are studied over the period 1961–2018 using the GECCO3 ocean synthesis. In four dynamically distinct regions of the Atlantic, the study identifies causes for FWC variability with a focus on interannual and decadal time‐scale changes. Results show that in each region, it is a combination of the surface freshwater flux and the net freshwater transport across the region's boundaries that act jointly in changing the respective FWC. Surface flux mainly contributes to the FWC variability on multi‐decadal time scales. The impact of surface flux also increases toward the tropics. On shorter time scales, it is especially horizontal transport fluctuations, leading to FWC changes in mid and high latitudes. Going from north to the south, the transport across a single meridional boundary becomes less correlated with the FWC changes but the net transport across both boundaries plays an increasingly important role. Moreover, the subpolar box is mainly gyre driven, which differs from the other two, essentially overturning driven, North Atlantic boxes. In the tropical Atlantic, the shallow overturning cell and the deep overturning contribute about equal amounts to the freshwater variations.
    Description: Plain Language Summary: Causes for freshwater content (FWC) variability in the Atlantic Ocean are analyzed for four study areas over the period 1961–2018 based on a model simulation (GECCO3 ocean synthesis). Targeting relatively long time scales, interannual, decadal to multi‐decadal FWC changes are separated into the contributions from variations of the freshwater input/output through the ocean surface and from freshwater transport (FWT) variations related to the ocean circulation changes. Surface freshwater flux is more influential on multi‐decadal time scales, and its impact increases toward the tropics. On shorter time scales, the oceanic FWT across the boundaries of the region dominates the FWC changes in mid and high latitudes. The transport variability in the subpolar region is mainly driven by the horizontal circulation, while transports resulting from vertical salinity differences are more important at lower latitudes. Moreover, in the tropics transports related to shallow salinity differences are not negligible on interannual time scales.
    Description: Key Points: The net freshwater transport across the meridional boundaries dominates the freshwater content variations in mid and high latitudes. The importance of surface freshwater flux variations increases toward the tropics and on multi‐decadal time scales. Subpolar changes are mainly gyre driven, while overturning and especially the shallow overturning cells contribute more at lower latitudes.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: https://icdc.cen.uni-hamburg.de/en/gecco3.html
    Description: http://www.metoffice.gov.uk/hadobs/en4/download-en4-2-2.html
    Description: https://www.cen.uni-hamburg.de/en/icdc/data/atmosphere/hoaps.html
    Keywords: ddc:551.46 ; Atlantic Ocean ; freshwater content (FWC) ; regional changes ; GECCO3
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...