GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 551.46  (1)
  • Freshwater  (1)
Document type
Keywords
Publisher
Years
  • 1
    Publication Date: 2021-07-21
    Description: This study presents recent observations to quantify oceanic heat fluxes along the continental slope of the Eurasian part of the Arctic Ocean, in order to understand the dominant processes leading to the observed along‐track heat loss of the Arctic Boundary Current (ABC). We investigate the fate of warm Atlantic Water (AW) along the Arctic Ocean continental margin of the Siberian Seas based on 11 cross‐slope conductivity, temperature, depth transects and direct heat flux estimates from microstructure profiles obtained in summer 2018. The ABC loses on average O(108) J m−2 per 100 km during its propagation along the Siberian shelves, corresponding to an average heat flux of 47 W m−2 out of the AW layer. The measured vertical heat flux on the upper AW interface of on average 10 W m−2 in the deep basin, and 3.7 W m−2 above the continental slope is larger than previously reported values. Still, these heat fluxes explain less than 20% of the observed heat loss within the boundary current. Heat fluxes are significantly increased in the turbulent near‐bottom layer, where AW intersects the continental slope, and at the lee side of a topographic irregularity. This indicates that mixing with ambient colder water along the continental margins is an important contribution to AW heat loss. Furthermore, the cold halocline layer receives approximately the same amount of heat due to upward mixing from the AW, compared to heat input from the summer‐warmed surface layer above. This underlines the importance of both surface warming and increased vertical mixing in a future ice‐free Arctic Ocean in summer.
    Description: Plain Language Summary: Warm water from the Atlantic Ocean enters the Arctic Ocean through the Barents Sea and the Fram Strait, between Greenland and Norway, and directly influences the formation of sea ice: When the Atlantic Water (AW) is located close to the ocean's surface, as is the case shortly after its inflow in the Barents Sea, sea ice melts and new sea ice formation is hindered. This is why the Barents Sea is often ice free, even in winter. Further along the pathway, in the Laptev and East Siberian Sea study region, the AW gradually cools and dives down to deeper layers. In order to quantify the cooling and to understand how and where it happens, we measured vertical profiles of temperature and heat fluxes along a 2,500 km long part of the AW pathway. Based on these measurements, we found that the heat loss mainly occurs by mixing of warm AW with ambient cold water above the continental slope, in particular in the highly energetic region near the sea floor.
    Description: Key Points: The Atlantic Water (AW) transported in the Arctic Boundary Current loses O(108)  J m−2 per 100 km during its translation along the Siberian shelves Heat fluxes are larger than previously reported values, but too small to account for this heat loss, indicating the importance of boundary mixing The heat input from the underlying AW layer to the cold halocline is of similar magnitude to the heat input from the warm surface layer above
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: NSF | GEO | Division of Ocean Sciences http://dx.doi.org/10.13039/100000141
    Keywords: 551.46 ; Arctic Boundary Current ; Arctic Ocean ; heat flux ; Laptev Sea ; mixing ; turbulence
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Geophysical Research: Biogeosciences 121 (2016): 675-717, doi:10.1002/2015JG003140.
    Description: The Arctic Ocean is a fundamental node in the global hydrological cycle and the ocean's thermohaline circulation. We here assess the system's key functions and processes: (1) the delivery of fresh and low-salinity waters to the Arctic Ocean by river inflow, net precipitation, distillation during the freeze/thaw cycle, and Pacific Ocean inflows; (2) the disposition (e.g., sources, pathways, and storage) of freshwater components within the Arctic Ocean; and (3) the release and export of freshwater components into the bordering convective domains of the North Atlantic. We then examine physical, chemical, or biological processes which are influenced or constrained by the local quantities and geochemical qualities of freshwater; these include stratification and vertical mixing, ocean heat flux, nutrient supply, primary production, ocean acidification, and biogeochemical cycling. Internal to the Arctic the joint effects of sea ice decline and hydrological cycle intensification have strengthened coupling between the ocean and the atmosphere (e.g., wind and ice drift stresses, solar radiation, and heat and moisture exchange), the bordering drainage basins (e.g., river discharge, sediment transport, and erosion), and terrestrial ecosystems (e.g., Arctic greening, dissolved and particulate carbon loading, and altered phenology of biotic components). External to the Arctic freshwater export acts as both a constraint to and a necessary ingredient for deep convection in the bordering subarctic gyres and thus affects the global thermohaline circulation. Geochemical fingerprints attained within the Arctic Ocean are likewise exported into the neighboring subarctic systems and beyond. Finally, we discuss observed and modeled functions and changes in this system on seasonal, annual, and decadal time scales and discuss mechanisms that link the marine system to atmospheric, terrestrial, and cryospheric systems.
    Description: World Climate Research Program-Climate and Cryosphere (WCRP-CliC); Arctic Monitoring and Assessment Program (AMAP) International Arctic Science Committee (IASC); Norwegian Ministries of Environment and of Foreign Affairs; Swedish Secretariat for Environmental Earth System Sciences (SSEESS); Swedish Polar Research Secretariat; NSF Grant Numbers: OCE 1130008, 1249133, AON-1203473, AON-1338948, OCE 1434041; Polar Research Programme of the Norwegian Research Council Grant Number: 226415
    Keywords: Arctic ; Oceans ; Circulation ; Freshwater ; Carbon cycle ; Acidification
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...