GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 551.46  (1)
  • Alkalinity, total; Animalia; Aragonite saturation state; Benthic animals; Benthos; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcification/Dissolution; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chromista; Coast and continental shelf; Event label; Experiment; Fucus vesiculosus; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Identification; Kiel_Fjord_mussel; Kiel Fjord; Laboratory experiment; Macroalgae; Moenkeberg_marina_Fucus-meadow; Mollusca; Mytilus edulis; Net calcification rate of calcium carbonate; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Ochrophyta; Oxygen; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Phase; Registration number of species; Replicate; Salinity; Single species; Species; Species interaction; Temperate; Temperature, water; Treatment; Treatment: partial pressure of carbon dioxide; Type; Uniform resource locator/link to reference; Water sample; WS  (1)
  • Benthocosm_A1; Benthocosm_A2; Benthocosm_B1; Benthocosm_B2; Benthocosm_C1; Benthocosm_C2; Benthocosm_D1; Benthocosm_D2; Benthocosm_E1; Benthocosm_E2; Benthocosm_F1; Benthocosm_F2; DATE/TIME; Event label; Fjord; flowering; Identification; Kiel Fjord; MESO; Mesocosm experiment; Salinity; Seagrass; seasonality; Sea surface temperature rise; thermal tolerance; Treatment; winter warming; Zostera marina
Document type
Keywords
Years
  • 1
    Publication Date: 2021-06-27
    Description: In coastal marine environments, physical and biological forces can cause dynamic pH fluctuations from microscale (diffusive boundary layer [DBL]) up to ecosystem‐scale (benthic boundary layer [BBL]). In the face of ocean acidification (OA), such natural pH variations may modulate an organism's response to OA by providing temporal refugia. We investigated the effect of pH fluctuations, generated by the brown alga Fucus serratus' biological activity, on the calcifying epibionts Balanus improvisus and Electra pilosa under OA. For this, both epibionts were grown on inactive and biologically active surfaces and exposed to (1) constant pH scenarios under ambient (pH 8.1) or OA conditions (pH 7.7), or (2) oscillating pH scenarios mimicking BBL conditions at ambient (pH 7.7–8.6) or OA scenarios (pH 7.4–8.2). Furthermore, all treatment combinations were tested at 10°C and 15°C. Against our expectations, OA treatments did not affect epibiont growth under constant or fluctuating (BBL) pH conditions, indicating rather high robustness against predicted OA scenarios. Furthermore, epibiont growth was hampered and not fostered on active surfaces (fluctuating DBL conditions), indicating that fluctuating pH conditions of the DBL with elevated daytime pH do not necessarily provide temporal refugia from OA. In contrast, results indicate that factors other than pH may play larger roles for epibiont growth on macrophytes (e.g., surface characteristics, macrophyte antifouling defense, or dynamics of oxygen and nutrient concentrations). Warming enhanced epibiont growth rates significantly, independently of OA, indicating no synergistic effects of pH treatments and temperature within their natural temperature range.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: 551.46 ; coastal marine environments ; calcifying marine epibionts
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-07-19
    Description: Ocean acidification (OA) is generally assumed to negatively impact calcification rates of marine organisms. At a local scale however, biological activity of macrophytes may generate pH fluctuations with rates of change that are orders of magnitude larger than the long-term trend predicted for the open ocean. These fluctuations may in turn impact benthic calcifiers in the vicinity. Combining laboratory, mesocosm and field studies, such interactions between OA, the brown alga Fucus vesiculosus, the sea grass Zostera marina and the blue mussel Mytilus edulis were investigated at spatial scales from decimetres to 100s of meters in the western Baltic. Macrophytes increased the overall mean pH of the habitat by up to 0.3 units relative to macrophyte- free, but otherwise similar, habitats and imposed diurnal pH fluctuations with amplitudes ranging from 0.3 to more than 1 pH unit. These amplitudes and their impact on mussel calcification tended to increase with increasing macrophyte biomass to bulk water ratio. At the laboratory and mesocosm scales, biogenic pH fluc- tuations allowed mussels to maintain calcification even under acidified conditions by shifting most of their calcification activity into the daytime when biogenic fluctuations caused by macrophyte activity offered temporal refuge from OA stress. In natural habitats with a low biomass to water body ratio, the impact of biogenic pH fluctuations on mean calcification rates of M. edulis was less pronounced. Thus, in dense algae or seagrass habitats, macrophytes may mitigate OA impact on mussel calcification by raising mean pH and providing temporal refuge from acidification stress.
    Keywords: Alkalinity, total; Animalia; Aragonite saturation state; Benthic animals; Benthos; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcification/Dissolution; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chromista; Coast and continental shelf; Event label; Experiment; Fucus vesiculosus; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Identification; Kiel_Fjord_mussel; Kiel Fjord; Laboratory experiment; Macroalgae; Moenkeberg_marina_Fucus-meadow; Mollusca; Mytilus edulis; Net calcification rate of calcium carbonate; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Ochrophyta; Oxygen; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Phase; Registration number of species; Replicate; Salinity; Single species; Species; Species interaction; Temperate; Temperature, water; Treatment; Treatment: partial pressure of carbon dioxide; Type; Uniform resource locator/link to reference; Water sample; WS
    Type: dataset
    Format: text/tab-separated-values, 1910 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...