GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 4-Dihydroxyphenylacetic acid  (1)
  • Climate information  (1)
  • 1
    ISSN: 1432-072X
    Keywords: Key words Human intestinal bacteria ; Flavonoid ; degradation ; Quercetin-3-glucoside ; Ring cleavage ; 3 ; 4-Dihydroxyphenylacetic acid ; Phloroglucinol
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract From human feces two phenotypically different types of bacteria were isolated on quercetin-3-glucoside as carbon and energy source. Isolates of one type were identified as strains of Enterococcus casseliflavus. They utilized the sugar moiety of the glycoside, but did not degrade the aglycon further. The sugar moiety (4 mM) was fermented to 5.5 ± 2.1 mM formate, 2.1 ± 0.7 mM acetate, 1.6 ± 0.3 mM l-lactate, and 1.3 ± 0.4 mM ethanol. The second type of isolate was identified as Eubacterium ramulus. This organism was capable of degrading the aromatic ring system. Growing cultures of Eubacterium ramulus converted 5 mM quercetin-3-glucoside to 1.7 ± 0.6 mM 3,4-dihydroxyphenylacetic acid, 7.6 ± 1.0 mM acetate, and 4.0 ± 0.4 mM butyrate. Molecular hydrogen, 3,4-dihydroxybenzaldehyde, and ethanol were detected in small amounts. Phloroglucinol was a transient intermediate in the breakdown of quercetin-3-glucoside. Eubacterium ramulus did not grow on the aglycon quercetin or the ring-fission intermediate phloroglucinol, but cleaved the flavonoid ring system when glucose was present as a cosubstrate. The most probable number of quercetin-3-glucoside-degrading bacteria determined in nine human fecal samples was 107–109/g dry mass. Isolates from these experiments were all identified as Eubacterium ramulus.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Stammer, D., Bracco, A., AchutaRao, K., Beal, L., Bindoff, N. L., Braconnot, P., Cai, W., Chen, D., Collins, M., Danabasoglu, G., Dewitte, B., Farneti, R., Fox-Kemper, B., Fyfe, J., Griffies, S. M., Jayne, S. R., Lazar, A., Lengaigne, M., Lin, X., Marsland, S., Minobe, S., Monteiro, P. M. S., Robinson, W., Roxy, M. K., Rykaczewski, R. R., Speich, S., Smith, I. J., Solomon, A., Storto, A., Takahashi, K., Toniazzo, T., & Vialard, J. Ocean climate observing requirements in support of climate research and climate information. Frontiers in Marine Science, 6, (2019): 444, doi:10.3389/fmars.2019.00444.
    Description: Natural variability and change of the Earth’s climate have significant global societal impacts. With its large heat and carbon capacity and relatively slow dynamics, the ocean plays an integral role in climate, and provides an important source of predictability at seasonal and longer timescales. In addition, the ocean provides the slowly evolving lower boundary to the atmosphere, driving, and modifying atmospheric weather. Understanding and monitoring ocean climate variability and change, to constrain and initialize models as well as identify model biases for improved climate hindcasting and prediction, requires a scale-sensitive, and long-term observing system. A climate observing system has requirements that significantly differ from, and sometimes are orthogonal to, those of other applications. In general terms, they can be summarized by the simultaneous need for both large spatial and long temporal coverage, and by the accuracy and stability required for detecting the local climate signals. This paper reviews the requirements of a climate observing system in terms of space and time scales, and revisits the question of which parameters such a system should encompass to meet future strategic goals of the World Climate Research Program (WCRP), with emphasis on ocean and sea-ice covered areas. It considers global as well as regional aspects that should be accounted for in designing observing systems in individual basins. Furthermore, the paper discusses which data-driven products are required to meet WCRP research and modeling needs, and ways to obtain them through data synthesis and assimilation approaches. Finally, it addresses the need for scientific capacity building and international collaboration in support of the collection of high-quality measurements over the large spatial scales and long time-scales required for climate research, bridging the scientific rational to the required resources for implementation.
    Description: This work was partly supported by the DFG funded excellence center CliSAP of the Universituat Hamburg (DS). AB was supported by the National Science Foundation through award NSF-1658174 and by the NOAA through award NA16OAR4310173. SM was supported by the Earth Systems and Climate Change Hub of the Australian Government’s National Environmental Science Program.
    Keywords: Ocean observing system ; Ocean climate ; Earth observations ; In situ measurements ; Satellite observations ; Ocean modeling ; Climate information
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...