GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 234Th tracer; Climate - Biogeochemistry Interactions in the Tropical Ocean; CTD/Rosette; CTD 002; CTD 003; CTD 012; CTD 017; CTD 028; CTD 040; CTD 053; CTD 054; CTD 065; CTD 073; CTD 077; CTD 086; CTD 094; CTD 101; CTD-RO; Date/Time of event; DEPTH, water; eastern tropical South Pacific; Elevation of event; Error, absolute; Event label; Fluorescence, chlorophyll; Latitude of event; Longitude of event; M138; M138_879-1; M138_879-3; M138_882-10; M138_883-12; M138_888-7; M138_892-14; M138_898-1; M138_898-2; M138_904-16; M138_906-18; M138_907-11; M138_912-3; M138_915-1; M138_919-1; Meteor (1986); Oxygen; Salinity; SFB754; Temperature, water; Thorium-234, total; Uranium-238; Uranium-238, error; uranium-salinity correlation  (1)
  • Atomic absorption spectrometry (AAS); Cadmium; Cast number; Climate - Biogeochemistry Interactions in the Tropical Ocean; CTD/Rosette; CTD-RO; DEPTH, water; Event label; GOFLO; Go-Flo bottles; LATITUDE; LONGITUDE; M77/3; M77/3_011-1; M77/3-CTD50; M77/4; M77/4_078; M77/4-CTD12; M77/4-CTD18; M77/4-CTD19; M77/4-CTD23; M77/4-CTD3; M77/4-CTD35; M77/4-CTD4; M77/4-CTD44; M77/4-CTD45; M77/4-CTD48; M77/4-CTD50; M77/4-CTD52; M77/4-CTD53; M77/4-CTD63; M77/4-CTD64; Meteor (1986); Sample code/label; SFB754; Standard deviation; Station label; δ114/110Cd; ε-114/110 Cd  (1)
  • Electronic atlas  (1)
Document type
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Xie, Ruifang C; Rehkämper, Mark; Grasse, Patricia; van de Flierdt, Tina; Frank, Martin; Xue, Zichen (2019): Isotopic evidence for complex biogeochemical cycling of Cd in the eastern tropical South Pacific. Earth and Planetary Science Letters, 512, pp.134-146, https://doi.org/10.1016/j.epsl.2019.02.001
    Publication Date: 2023-10-28
    Description: The depth profiles of Cd isotopes display high δ114/110Cd at the surface and decreasing δ114/110Cd with increasing water depth, consistent with preferential utilization of lighter Cd isotopes during biological uptake in the euphotic zone and subsequent remineralization of the sinking biomass. In the surface and subsurface ocean, seawater displays similar δ114/110Cd signatures of 0.47 ±0.23‰ to 0.82 ±0.05‰ across the entire eastern tropical South Pacific despite highly variable Cd concentrations between 0.01 and 0.84 nmol/kg. This observation, best explained by an open system steady-state fractionation model, contrasts with previous studies of the South Atlantic and South Pacific Oceans, where only Cd-deficient waters have a relatively constant Cd isotope signature. For the subsurface to about 500 m depth, the variability of seawater Cd isotope compositions can be modeled by mixing of remineralized Cd with subsurface water from the base of the mixed layer. In the intermediate and deep eastern tropical South Pacific (〉500 m), seawater [Cd] and δ114/110Cd appear to follow the distribution and mixing of major water masses. We identified modified AAIW of the ETSP to be more enriched in [Cd] than AAIW from the source region, whilst both water masses have similar δ114/110Cd. A mass balance estimate thus constrains a δ114/110Cd of between 0.38‰ and 0.56‰ for the accumulated remineralized Cd in the ETSP. Nearly all samples show a tight coupling of Cd and PO4 concentrations, whereby surface and deeper waters define two distinct linear trends. However, seawater at a coastal station located within a pronounced plume of H2S, is depleted in [Cd] and features significantly higher δ114/110Cd. This signature is attributed to the formation of authigenic CdS with preferential incorporation of lighter Cd isotopes. The process follows a Rayleigh fractionation model with a fractionation factor of α114/110Cd(seawater-CdS)=1.00029. Further deviations from the deep Cd-PO4 trend were observed for samples with O2〈10μmol/kg and are best explained by in situ CdS precipitation within the decaying organic matter even though dissolved H2S was not detectable in ambient seawater.
    Keywords: Atomic absorption spectrometry (AAS); Cadmium; Cast number; Climate - Biogeochemistry Interactions in the Tropical Ocean; CTD/Rosette; CTD-RO; DEPTH, water; Event label; GOFLO; Go-Flo bottles; LATITUDE; LONGITUDE; M77/3; M77/3_011-1; M77/3-CTD50; M77/4; M77/4_078; M77/4-CTD12; M77/4-CTD18; M77/4-CTD19; M77/4-CTD23; M77/4-CTD3; M77/4-CTD35; M77/4-CTD4; M77/4-CTD44; M77/4-CTD45; M77/4-CTD48; M77/4-CTD50; M77/4-CTD52; M77/4-CTD53; M77/4-CTD63; M77/4-CTD64; Meteor (1986); Sample code/label; SFB754; Standard deviation; Station label; δ114/110Cd; ε-114/110 Cd
    Type: Dataset
    Format: text/tab-separated-values, 656 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-15
    Keywords: 234Th tracer; Climate - Biogeochemistry Interactions in the Tropical Ocean; CTD/Rosette; CTD 002; CTD 003; CTD 012; CTD 017; CTD 028; CTD 040; CTD 053; CTD 054; CTD 065; CTD 073; CTD 077; CTD 086; CTD 094; CTD 101; CTD-RO; Date/Time of event; DEPTH, water; eastern tropical South Pacific; Elevation of event; Error, absolute; Event label; Fluorescence, chlorophyll; Latitude of event; Longitude of event; M138; M138_879-1; M138_879-3; M138_882-10; M138_883-12; M138_888-7; M138_892-14; M138_898-1; M138_898-2; M138_904-16; M138_906-18; M138_907-11; M138_912-3; M138_915-1; M138_919-1; Meteor (1986); Oxygen; Salinity; SFB754; Temperature, water; Thorium-234, total; Uranium-238; Uranium-238, error; uranium-salinity correlation
    Type: Dataset
    Format: text/tab-separated-values, 1006 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Chemical Geology 493 (2018): 210-223, doi:10.1016/j.chemgeo.2018.05.040.
    Description: The GEOTRACES Intermediate Data Product 2017 (IDP2017) is the second publicly available data product of the international GEOTRACES programme, and contains data measured and quality controlled before the end of 2016. The IDP2017 includes data from the Atlantic, Pacific, Arctic, Southern and Indian oceans, with about twice the data volume of the previous IDP2014. For the first time, the IDP2017 contains data for a large suite of biogeochemical parameters as well as aerosol and rain data characterising atmospheric trace element and isotope (TEI) sources. The TEI data in the IDP2017 are quality controlled by careful assessment of intercalibration results and multi-laboratory data comparisons at crossover stations. The IDP2017 consists of two parts: (1) a compilation of digital data for more than 450 TEIs as well as standard hydrographic parameters, and (2) the eGEOTRACES Electronic Atlas providing an on-line atlas that includes more than 590 section plots and 130 animated 3D scenes. The digital data are provided in several formats, including ASCII, Excel spreadsheet, netCDF, and Ocean Data View collection. Users can download the full data packages or make their own custom selections with a new on-line data extraction service. In addition to the actual data values, the IDP2017 also contains data quality flags and 1-σ data error values where available. Quality flags and error values are useful for data filtering and for statistical analysis. Metadata about data originators, analytical methods and original publications related to the data are linked in an easily accessible way. The eGEOTRACES Electronic Atlas is the visual representation of the IDP2017 as section plots and rotating 3D scenes. The basin-wide 3D scenes combine data from many cruises and provide quick overviews of large-scale tracer distributions. These 3D scenes provide geographical and bathymetric context that is crucial for the interpretation and assessment of tracer plumes near ocean margins or along ridges. The IDP2017 is the result of a truly international effort involving 326 researchers from 25 countries. This publication provides the critical reference for unpublished data, as well as for studies that make use of a large cross-section of data from the IDP2017. This article is part of a special issue entitled: Conway GEOTRACES - edited by Tim M. Conway, Tristan Horner, Yves Plancherel, and Aridane G. González.
    Description: We gratefully acknowledge financial support by the Scientific Committee on Oceanic Research (SCOR) through grants from the U.S. National Science Foundation, including grants OCE-0608600, OCE-0938349, OCE-1243377, and OCE-1546580. Financial support was also provided by the UK Natural Environment Research Council (NERC), the Ministry of Earth Science of India, the Centre National de Recherche Scientifique, l'Université Paul Sabatier de Toulouse, the Observatoire Midi-Pyrénées Toulouse, the Universitat Autònoma de Barcelona, the Kiel Excellence Cluster The Future Ocean, the Swedish Museum of Natural History, The University of Tokyo, The University of British Columbia, The Royal Netherlands Institute for Sea Research, the GEOMAR-Helmholtz Centre for Ocean Research Kiel, and the Alfred Wegener Institute.
    Keywords: GEOTRACES ; Trace elements ; Isotopes ; Electronic atlas ; IDP2017
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...