GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0649
    Keywords: 42.70.Gz ; 42.30.Va ; 42.40.Kw ; 42.65
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract We have optically characterized the newly-developed photorefractive crystal KNSBN: Cu by two-wave coupling at visible and near-infrared wavelengths. The effective electrooptic coefficientsξ(k g)r 13 andξ(k g)r 33, the effective charge carrier densityN eff, the dark conductivityσ d, the product of mobility and electron-trap recombination timeμτ R, the formation and decay rate of index grating and the absorption coefficientα of the crystal were determined from visible to near-infrared wavelengths. Their wavelength dependences were also studied. It is interesting to notice that the KNSBN: Cu crystal has a very largeN eff and large gain coefficientΓ for ordinary ray (o-ray) in the visible region, and the photorefractive properties of the crystal are very different in the visible and near-infrared spectral regions.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1617-4623
    Keywords: Key words Maltose permease ; REG1 ; 2 ; Glucose signaling ; Yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The REG1 gene encodes a regulatory subunit of the type-1 protein phosphatase (PP1) Glc7 in Saccharomyces cerevisiae, which directs the catalytic subunit to substrates involved in glucose repression. Loss of REG1 relieves glucose repression of many genes, including the MAL structural genes that encode the maltose fermentation enzymes. In this report, we explore the role of Reg1p and its homolog Reg2p in glucose-induced inactivation of maltose permease. Glucose stimulates the proteolysis of maltose permease and very rapid loss of maltose transport activity – more rapid than can be explained by loss of the permease protein alone. In a reg1Δ strain we observe a significantly reduced rate of glucose-induced proteolysis of maltose permease, and the rapid loss of maltose transport activity does not occur. Instead, surprisingly, the slow rate of proteolysis of maltose permease is accompanied by an increase in maltose transport activity. Loss of Reg2p modestly reduces the rates of both glucose-induced proteolysis of maltose permease and inactivation of maltose transport activity. Overexpression of Reg2p in a reg1Δ strain suppresses the effect on maltose permease proteolysis and partially restores the inactivation of maltose transport activity, but does not affect the insensitivity of MAL gene expression to repression by glucose observed in this strain. Thus, protein phosphatase type-1 (Glc7p-Reg1p and Glc7p-Reg2p) plays a role in transduction of the glucose signal during glucose-induced proteolysis of maltose permease, but only Glc7p-Reg1p is involved in glucose-induced inactivation of maltose transport activity and glucose repression of MAL gene expression. Overexpression of REG1 partially restores proteolysis of maltose permease in a grr1Δ strain, which lacks glucose signaling, but does not rescue rapid inactivation of maltose transport activity or sensitivity to glucose repression. A model for the role of Reg1p and Reg2p in glucose signaling pathways is discussed. We also uncovered a previously unrecognized G2/M delay in the grr1Δ but not the reg1Δ strains, and this delay is suppressed by REG1 overexpression. The G1/S delay seen in grr1Δ mutants is slightly suppressed as well, but REG1 overexpression does not suppress other grr1Δ phenotypes such as insensitivity to glucose repression.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...