GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Marine mammal  (2)
  • 18S (SSU) rRNA gene  (1)
Document type
Keywords
Years
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Endangered Species Research 26 (2014): 103-113, doi:10.3354/esr00630.
    Description: The stock structure of the sei whale Balaenoptera borealis in the North Atlantic is unknown, despite years of commercial hunting. New and up-to-date data on distribution and movements are essential for the creation of plausible hypotheses about the stock structure of this species. Between 2008 and 2009 satellite tracks of 8 sei whales were obtained, 7 during spring and 1 in late September. Using a hierarchical switching state-space model we investigated the movements, behaviour and the role of distinct areas in their life history. Two distinct phases corresponding to migratory and foraging movements were identified. A migratory corridor between the Azores and the Labrador Sea is clearly identifiable from the data. Behaviour consistent with foraging was observed frequently in the Labrador Sea, showing that it constitutes an important feeding ground. A link between the Labrador Sea and other feeding grounds to the east is deemed likely. The data also support a discrete feeding ground in the Gulf of Maine and off Nova Scotia. A possible link between the feeding grounds in the Labrador Sea and wintering grounds off northwestern Africa is proposed.
    Description: This research was supported by Fundação para a Ciência e Tecnologia (FCT), Fundo Regional da Ciência, Tecnologia (FRCT), through research projects TRACEPTDC/ MAR/74071/2006 and MAPCET-M2.1.2/F/012/2011 (FEDER, the Competitiveness Factors Operational [COMPETE], QREN European Social Fund, and Proconvergencia Açores/EU Program). We acknowledge funds provided by FCT to LARSyS Associated Laboratory & IMAR—University of the Azores/the Thematic Area D & E of the Strategic Project PEst-OE/EEI/LA0009/2011-1012 and 2013-2014 (OE & Compete) and by the FRCT—Government of the Azores pluriannual funding. M.A.S. was supported by POPH, QREN European Social Fund and the Portuguese Ministry for Science and Education, through an FCT Investigator grant. R.P. was supported by an FCT doctoral grant (SFRH/ BD/41192/2007) and by a research grant from the Azores Regional Fund for Science and Technology (M3.1.5/ F/115/ 2012).
    Keywords: Migration ; Satellite tracking ; Marine mammal ; Stock structure ; Labrador Sea ; Azores ; Whale ecology ; Sei whale
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022]. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Suter, E. A., Pachiadaki, M., Taylor, G. T., & Edgcomb, V. P. Eukaryotic parasites are integral to a productive microbial food web in oxygen-depleted waters. Frontiers in Microbiology, 12, (2022): 764605, https://doi.org/10.3389/fmicb.2021.764605.
    Description: Oxygen-depleted water columns (ODWCs) host a diverse community of eukaryotic protists that change dramatically in composition over the oxic-anoxic gradient. In the permanently anoxic Cariaco Basin, peaks in eukaryotic diversity occurred in layers where dark microbial activity (chemoautotrophy and heterotrophy) were highest, suggesting a link between prokaryotic activity and trophic associations with protists. Using 18S rRNA gene sequencing, parasites and especially the obligate parasitic clade, Syndiniales, appear to be particularly abundant, suggesting parasitism is an important, but overlooked interaction in ODWC food webs. Syndiniales were also associated with certain prokaryotic groups that are often found in ODWCs, including Marinimicrobia and Marine Group II archaea, evocative of feedbacks between parasitic infection events, release of organic matter, and prokaryotic assimilative activity. In a network analysis that included all three domains of life, bacterial and archaeal taxa were putative bottleneck and hub species, while a large proportion of edges were connected to eukaryotic nodes. Inclusion of parasites resulted in a more complex network with longer path lengths between members. Together, these results suggest that protists, and especially protistan parasites, play an important role in maintaining microbial food web complexity, particularly in ODWCs, where protist diversity and microbial productivity are high, but energy resources are limited relative to euphotic waters.
    Description: This work was supported by the National Science Foundation (NSF) grants (OCE-1336082 to VE and OCE-1335436 and OCE-1259110 to GT). The Cyverse infrastructure and resources are supported by the NSF under Award Numbers DBI-0735191, DBI-1265383, and DBI-1743442 (www.cyverse.org). Support was also provided by the Faculty Scholarship and Academic Advancement Committee at Molloy College.
    Keywords: 18S (SSU) rRNA gene ; Oxygen-depleted environment ; Oxygen minimum zone (OMZ) ; Protist ; Syndiniales ; Parasite ; Eukaryotes ; Network analysis
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Apprill, A., Miller, C. A., Van Cise, A. M., U'Ren, J. M., Leslie, M. S., Weber, L., Baird, R. W., Robbins, J., Landry, S., Bogomolni, A., & Waring, G. Marine mammal skin microbiotas are influenced by host phylogeny. Royal Society Open Science, 7(5), (2020): 192046, doi:10.1098/rsos.192046.
    Description: Skin-associated microorganisms have been shown to play a role in immune function and disease of humans, but are understudied in marine mammals, a diverse animal group that serve as sentinels of ocean health. We examined the microbiota associated with 75 epidermal samples opportunistically collected from nine species within four marine mammal families, including: Balaenopteridae (sei and fin whales), Phocidae (harbour seal), Physeteridae (sperm whales) and Delphinidae (bottlenose dolphins, pantropical spotted dolphins, rough-toothed dolphins, short-finned pilot whales and melon-headed whales). The skin was sampled from free-ranging animals in Hawai‘i (Pacific Ocean) and off the east coast of the United States (Atlantic Ocean), and the composition of the bacterial community was examined using the sequencing of partial small subunit (SSU) ribosomal RNA genes. Skin microbiotas were significantly different among host species and taxonomic families, and microbial community distance was positively correlated with mitochondrial-based host genetic divergence. The oceanic location could play a role in skin microbiota variation, but skin from species sampled in both locations is necessary to determine this influence. These data suggest that a phylosymbiotic relationship may exist between microbiota and their marine mammal hosts, potentially providing specific health and immune-related functions that contribute to the success of these animals in diverse ocean ecosystems.
    Description: Funding provided by the Earth Microbiome Project, WHOI Marine Mammal Center, WHOI Ocean Life Institute and WHOI's Andrew W. Mellon Foundation Endowed Fund for Innovative Research to A.A. Hawai‘i sampling was undertaken during field projects funded by grants from ONR (N000141310648 to R.W.B, N000141110612 to T.A. Mooney and N00014101686 to R.D. Andrews) and NMFS (NA13OAR4540212 to R.W.B).
    Keywords: Bacteria ; SSU ribosomal RNA gene ; Phylogeny ; Microorganism ; Marine mammal
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...