GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 162-985A; DRILL; Drilling/drill rig; Joides Resolution; Leg162; Norwegian Sea; Ocean Drilling Program; ODP  (1)
Document type
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Ikehara, Minoru; Kawamura, Kimitaka; Ohkouchi, Naohiko; Taira, Asahiko (1999): Organic geochemistry of greenish clay and organic-rich sediments since the early Miocene from Hole 985A, Norway Basin. In: Raymo, ME; Jansen, E; Blum, P; Herbert, TD (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 162, 1-8, https://doi.org/10.2973/odp.proc.sr.162.020.1999
    Publication Date: 2024-01-09
    Description: Dark, organic-rich sediments were recovered from the lower Miocene section (~16.6 Ma) in Hole 985A in the Norway Basin during Ocean Drilling Program Leg 162. Organic carbon and total sulfur contents of the dark sediments showed a maximum concentration of 5.6 and 26.1 wt%, respectively. Sulfur enrichment in the sediments indicates that these dark layers were formed under anoxic conditions in bottom water. Four dark and eight greenish gray sediment samples, ranging in age from early Miocene to Pleistocene, were analyzed for lipid-class compounds (aliphatic hydrocarbons, fatty alcohols, and sterols) using gas chromatography (GC) and GC/mass spectrometry to better understand the formation processes of the organic-rich dark layers and to reconstruct the paleoenvironmental changes. The molecular distributions of n-alkanes and fatty alcohols indicate that terrigenous organic matter largely contributed to both types of sediments. Significant amounts of hopanoid hydrocarbons, such as diploptene and hop-17(21)-ene, however, were detected characteristically in the dark sediments, which suggests that prokaryotes such as methane-oxidizing bacteria or cyanobacteria may have significantly contributed to the formation of these organic-rich, dark sediments. These results indicate that the bottom waters of the Norway Basin had been subjected to anoxic conditions during the early Miocene.
    Keywords: 162-985A; DRILL; Drilling/drill rig; Joides Resolution; Leg162; Norwegian Sea; Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...