GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic books.  (3)
  • 114-704; 114-704A; 114-704B; COMPCORE; Composite Core; DRILL; Drilling/drill rig; Joides Resolution; Leg114; Ocean Drilling Program; ODP; South Atlantic Ocean  (1)
Document type
Keywords
Language
Years
  • 1
    Online Resource
    Online Resource
    Dordrecht :Springer Netherlands,
    Keywords: Mass-wasting-Congresses. ; Electronic books.
    Description / Table of Contents: First International Symposium.
    Type of Medium: Online Resource
    Pages: 1 online resource (529 pages)
    Edition: 1st ed.
    ISBN: 9789401000932
    Series Statement: Advances in Natural and Technological Hazards Research Series ; v.19
    Language: English
    Note: Intro -- Title Page -- Copyright -- TABLE OF CONTENTS -- Foreword -- Authors Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Natural gas-Hydrates. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (501 pages)
    Edition: 1st ed.
    ISBN: 9783030811860
    DDC: 553.285
    Language: English
    Note: Intro -- Preface -- Contents -- Editors and Contributors -- A History of Gas Hydrate Research -- 1 Gas Hydrate Research: From the Laboratory to the Pipeline -- Abstract -- 1.1 General Aspects -- 1.2 Experimental Hydrate Research -- 1.2.1 Multiscale Approach -- 1.2.2 Overview of Experimental Techniques -- 1.2.2.1 Small (Laboratory) Scale -- 1.2.2.2 Pilot Scale -- 1.3 Final Considerations -- Acknowledgements -- References -- 2 Shallow Gas Hydrates Near 64° N, Off Mid-Norway: Concerns Regarding Drilling and Production Technologies -- Abstract -- 2.1 Introduction -- 2.2 The Nyegga Gas Hydrate Location -- 2.2.1 General -- 2.2.2 The BSR -- 2.2.2.1 BSR-Related Drilling and Engineering Concerns -- 2.2.3 Complex Pockmarks -- 2.2.4 Hydrate Pingoes -- 2.2.4.1 A Qualitative Model for Hydrate Pingo Formation -- 2.2.5 Carbonate Rubble -- 2.2.6 Pockmark-, Carbonate Rubble-, and Pingo-Related Engineering Concerns -- 2.2.7 Unique Fauna -- 2.2.8 Fauna-Related Drilling and Engineering Concerns -- 2.2.9 Gas Chimneys -- 2.2.10 Gas-Chimney Related Drilling, Production, and Engineering Concerns -- 2.3 Husmus Geological Setting -- 2.3.1 General -- 2.3.2 The Shallow BSR at Husmus -- 2.3.3 Husmus-Related Drilling and Engineering Concerns -- 2.4 Ormen Lange Gas Seeping Event -- 2.4.1 Gas Seepage-Related Drilling and Engineering Concerns -- 2.5 Conclusions -- Acknowledgements -- References -- 3 Finding and Using the World's Gas Hydrates -- Abstract -- 3.1 Introduction-The Location of Gas Hydrates Beneath the Seabed -- 3.2 History of Gas Hydrate Exploration and Global Assessments of Distribution -- 3.3 The Importance of Natural Gas Hydrates -- 3.3.1 The Role of Gas Hydrates in Climate Change -- 3.3.2 Hydrates as a Control on Benthic Ecosystems -- 3.3.3 The Role of Gas Hydrates in Slope Stability -- 3.3.4 Hydrates as a Future Energy Source. , 3.3.5 Carbon Capture and Storage (CCS) in Gas Hydrate Reservoirs -- 3.4 Evidence of Submarine Gas Hydrates -- 3.4.1 Geophysical Evidence -- 3.4.2 Quantifying Hydrates Through Chemical Measurements of Cores -- 3.4.3 Borehole Logging -- 3.5 Gas Hydrates in the Solar System: Applying Lessons from Earth -- 3.6 Summary -- References -- Gas Hydrate Fundamentals -- 4 Seismic Rock Physics of Gas-Hydrate Bearing Sediments -- Abstract -- 4.1 Introduction -- 4.2 Dry-Rock Moduli -- 4.2.1 Elastic Moduli from Theoretical Models -- 4.2.2 Dry-Rock Elastic Moduli from Calibration -- 4.3 Effective-Fluid Model for Partial Saturation -- 4.4 Permeability -- 4.5 Attenuation -- 4.6 Seismic Velocities -- 4.7 Estimation of the Seismic Velocities and Attenuation -- 4.8 Conclusions -- References -- 5 Estimation of Gas Hydrates in the Pore Space of Sediments Using Inversion Methods -- Abstract -- 5.1 Introduction -- 5.2 Methods, Physical Properties and Microstructures Used for Hydrate Quantification -- 5.3 Strategy for Gas Hydrate Exploration and Quantification -- 5.4 Conclusions -- References -- 6 Electromagnetic Applications in Methane Hydrate Reservoirs -- Abstract -- 6.1 Introduction -- 6.2 Electrical Properties of Gas Hydrates -- 6.2.1 Saturation Estimates -- 6.3 Marine CSEM Principle -- 6.4 CSEM Data Interpretation -- 6.5 CSEM Instrumentation and Exploration History -- 6.5.1 Seafloor-Towed Systems -- 6.5.2 Deep-Towed Systems -- 6.5.3 Other Systems -- 6.6 Global Case Studies -- 6.7 Discussion and Conclusions -- References -- Gas Hydrate Drilling for Research and Natural Resources -- 7 Hydrate Ridge-A Gas Hydrate System in a Subduction Zone Setting -- Abstract -- 7.1 Introduction -- 7.2 Tectonic Setting -- 7.3 Stratigraphy and Structure -- 7.4 The Bottom Simulating Reflection Across Hydrate Ridge -- 7.5 Hydrate Occurrence and Distribution Within Hydrate Ridge. , 7.5.1 Hydrate Concentrations from Drilling -- 7.5.2 Inferred Hydrates and Free Gas Regionally Across Hydrate Ridge -- 7.6 Conclusions -- References -- 8 Northern Cascadia Margin Gas Hydrates-Regional Geophysical Surveying, IODP Drilling Leg 311 and Cabled Observatory Monitoring -- Abstract -- 8.1 Introduction -- 8.2 Regional Occurrences of Gas Hydrate Inferred from Remote Sensing Data -- 8.3 The Gas Hydrate Petroleum System for the Northern Cascadia Margin -- 8.4 Gas Hydrate Saturation Estimates -- 8.5 Gas Vents, Focused Fluid Flow and Shallow Gas Hydrates -- 8.6 Long-Term Observations -- 8.6.1 Gas Emissions at the Seafloor -- 8.6.2 Controlled-Source EM and Seafloor Compliance -- 8.6.3 Borehole In Situ Monitoring -- 8.7 Summary and Conclusions -- Acknowledgements -- References -- 9 Accretionary Wedge Tectonics and Gas Hydrate Distribution in the Cascadia Forearc -- Abstract -- 9.1 Introduction -- 9.2 Data -- 9.3 Results -- 9.4 Summary -- Acknowledgements -- References -- 10 Bottom Simulating Reflections Below the Blake Ridge, Western North Atlantic Margin -- Abstract -- 10.1 Geologic Setting -- 10.2 A Brief History of Blake Ridge Gas Hydrate Research -- 10.3 Blake Ridge BSR Distribution, Character and Dynamics -- 10.3.1 A Dynamic BSR on the Eastern Flank of Blake Ridge -- 10.3.2 Gas Chimneys Extending from BSRs -- 10.3.3 The Role of Sediment Waves in Gas Migration from the BSR -- 10.3.4 The Blake Ridge Diapir -- 10.4 Unanswered Questions and Future Research -- References -- 11 A Review of the Exploration, Discovery and Characterization of Highly Concentrated Gas Hydrate Accumulations in Coarse-Grained Reservoir Systems Along the Eastern Continental Margin of India -- Abstract -- 11.1 Introduction -- 11.2 India National Gas Hydrate Program-Scientific Drilling Expeditions -- 11.3 Representative Gas Hydrate Systems-Krishna-Godavari Basin. , 11.3.1 Krishna-Godavari Basin Geologic Setting -- 11.3.2 NGHP-02 Area C Gas Hydrate System -- 11.3.3 NGHP-02 Area B Gas Hydrate System -- 11.4 Summary -- Acknowledgements -- References -- 12 Ulleung Basin Gas Hydrate Drilling Expeditions, Korea: Lithologic Characteristics of Gas Hydrate-Bearing Sediments -- Abstract -- 12.1 Introduction -- 12.2 Geological Setting of the Ulleung Basin -- 12.3 Overview of the First and Second Ulleung Basin Gas Hydrate Drilling Expeditions (UBGH1 and 2) -- 12.4 Lithologic Characteristics of Gas Hydrate-Bearing Sediments in the Ulleung Basin -- 12.5 Summary -- References -- 13 Bottom Simulating Reflections in the South China Sea -- Abstract -- 13.1 Introduction -- 13.2 Geological Setting and Gas Hydrate Drilling Expeditions -- 13.3 The Characteristics of BSRs Within Various Sediment Environments -- 13.3.1 BSR and Cold Seeps in Taixinan Basin -- 13.3.2 BSRs in the Pearl River Mouth Basin -- 13.3.3 BSRs in the Qiongdongnan Basin -- 13.4 Well Log Anomalies of Different Types of Gas Hydrate -- 13.5 BSR Dynamics and Response to Fluid Migration -- 13.6 Summary -- Acknowledgements -- References -- 14 Gas Hydrate and Fluid-Related Seismic Indicators Across the Passive and Active Margins off SW Taiwan -- Abstract -- 14.1 Introduction -- 14.2 Geological Setting -- 14.3 Seismic Observations -- 14.3.1 Gas Accumulation -- 14.3.2 Fluid Migration -- 14.3.3 Presence of Gas Hydrate -- 14.4 Distribution of the Seismic Indicators and Implications for Understanding the Hydrate System -- 14.5 Summary -- References -- 15 Gas Hydrate Drilling in the Nankai Trough, Japan -- Abstract -- 15.1 Introduction -- 15.2 Discovery of Gas Hydrates and Early Expeditions in the Nankai Trough Area -- 15.3 MITI Exploratory Test Well: Nankai Trough (1999-2000) -- 15.4 METI Multi-well Exploratory Drilling Campaign and Resource Assessments. , 15.4.1 Drilling Operations and Achievements -- 15.4.2 Discovery of the Methane Hydrate Concentration Zone and Resource Assessments -- 15.5 Tests for Gas Production Undertaken in 2013 and 2017 -- 15.5.1 Gas Production Techniques and Site Selection -- 15.5.2 Drilled Boreholes and Data/Sample Acquisitions -- 15.5.3 Production Test Results and Findings -- 15.6 Other Gas Hydrate Occurrences and Resource Evaluation Results -- 15.7 Summary -- Acknowledgements -- References -- 16 Alaska North Slope Terrestrial Gas Hydrate Systems: Insights from Scientific Drilling -- Abstract -- 16.1 Introduction -- 16.2 Alaska North Slope Gas Hydrate Accumulations -- 16.3 Alaska North Slope Gas Hydrate Research Drilling Programs -- 16.3.1 Mount Elbert Gas Hydrate Stratigraphic Test Well -- 16.3.2 Iġnik Sikumi Gas Hydrate Production Test Well -- 16.3.3 Hydrate-01 Stratigraphic Test Well -- 16.4 Alaska North Slope Gas Hydrate Energy Assessments -- 16.5 Summary -- Acknowledgements -- References -- Arctic -- 17 Gas Hydrates on Alaskan Marine Margins -- Abstract -- 17.1 Introduction -- 17.2 Southeastern Alaskan Margin -- 17.3 Aleutian Arc -- 17.3.1 Eastern Aleutian Arc -- 17.3.2 Central Aleutian Arc -- 17.3.3 Western Aleutian Arc -- 17.3.4 Bering Sea -- 17.4 US Beaufort Sea -- 17.5 Summary -- Acknowledgements -- References -- 18 Gas Hydrate Related Bottom-Simulating Reflections Along the West-Svalbard Margin, Fram Strait -- Abstract -- 18.1 Introduction -- 18.2 Geological and Oceanographic Settings -- 18.2.1 Regional Tectonic Setting -- 18.2.2 Sedimentary Setting -- 18.2.3 Oceanographic Setting -- 18.3 BSR Distribution and Characteristics Within Various Sediment Types -- 18.3.1 Regional Extent of the BSRs -- 18.4 Evidence for Gas Migration from Deep and Shallow Sources -- 18.4.1 The Gas Sources -- 18.4.2 Vertical Fluid Migration Features -- 18.5 Inferred Gas Hydrate Distribution. , 18.6 BSR Dynamics and Response to Natural Changes in the Environment.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Berlin, Heidelberg :Springer Berlin / Heidelberg,
    Keywords: Sediment transport-North Atlantic Ocean-Remote sensing. ; Marine sediments-North Atlantic Ocean-Remote sensing. ; Continental margins-Europe-Remote sensing. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (293 pages)
    Edition: 1st ed.
    ISBN: 9783642558467
    DDC: 551.46084
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Froelich, Philip N; Malone, P N; Hodell, David A; Ciesielski, Paul F; Warnke, Detlef A; Westall, Francis; Hailwood, Ernie A; Nobes, D C; Fenner, Juliane M; Mienert, Jürgen; Mwenifumbo, C J; Müller, Daniel W (1991): Biogenic opal and carbonate accumulation rates in the subantarctic South Atlantic: The late Neogene of Meteor Rise Site 704. In: Ciesielski, PF; Kristoffersen, Y; et al. (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 114, 515-550, https://doi.org/10.2973/odp.proc.sr.114.149.1991
    Publication Date: 2024-01-09
    Description: A preliminary composite depth section was generated for Site 704 by splicing Holes 704A and 704B together over the interval 0-350 mbsf (0-9 m.y.). High-resolution carbonate and opal data from the cores were correlated with the calcium and silicon signals from the GST logging run in Hole 704B to identify missing and disturbed intervals in the cores. Paleomagnetic and biostratigraphic age boundaries were then transferred to the composite depth records to obtain an age model, and sedimentation rates were calculated by linear interpolation between datums. Algorithms relating measured dry-bulk density to carbonate content and depth were generated to produce predicted values of density for every sample. Accumulation rates of bulk, carbonate, opal, and terrigenous sediment components were then computed to generate a record of sediment deposition on the Meteor Rise that has a resolution of better than 200,000 yr for the period from 8.6 to 1.0 m.y. From 8.6 to 2.5 m.y., bulk-accumulation rates on the Meteor Rise averaged less than 2 g/cm**2/1000 yr and were dominated by carbonate deposition. The first significant opal deposition (6.0 m.y.) punctuated a brief (less than 0.6 Ma) approach of the Polar Front Zone (PFZ) northward that heralded a period of increasing severity of periodic carbonate dissolution events (terrigenous maxima) that abruptly terminated at 4.8 m.y. (base of the Thvera Subchron), synchronous with the reflooding of the Mediterranean after the Messinian salinity crisis. From 4.8 to 2.5 m.y., carbonate again dominated deposition, and the PFZ was far south except during brief northward excursions bracketing 4.2-3.9, 3.3-2.9, and 2.8-2.7 m.y. At 2.5 m.y., all components of bulk-accumulation rates increased dramatically (up to 15 g/cm2/1000 yr), and by 2.4 m.y., a pattern of alternating, high-amplitude carbonate and opal cyclicity marked the initiation of rapid glacial to interglaci·l swings in the position of the PFZ, synchronous with the "onset" of major Northern Hemisphere glaciation. Both mass-accumulation rates and the amplitude of the cycles decreased by about 2 m.y., but opal accumulation rates remained high up through the base of the Jaramillo (0.98 m.y.). From 1.9 to 1 m.y., the record is characterized by moderate amplitude fluctuations in carbonate and opal. This record of opal accumulation rates is interpreted as a long-term "Polar Front Indicator" that monitors the advance and retreat of the opal-rich PFZ northward (southward) toward (away from) the Meteor Rise in the subantarctic sector of the South Atlantic Ocean. The timing of PFZ migrations in the subantarctic South Atlantic Ocean is remarkably similar to Pliocene-Pleistocene climate records deduced from benthic oxygen isotope records in the North Atlantic Ocean (Raymo et al., 1989, doi:10.1029/PA004i004p00413; Ruddiman et al., 1989, doi:10.1029/PA004i004p00353). These include northward migrations during "cold" intervals containing strong glacial isotope stages (2.4-2.3, 2.1-2.0, 1.95-1.55, 1.45-1.30 m.y. and at about 1.13 and 1.09 m.y.) and southward migrations during "warm" intervals containing weak glacial and/or strong interglacial stages (2.45-2.40, 2.30-2.10, 2.00-1.95, 1.52-1.45, 1.30-1.18, 1.11, and 1.06-0.93 m.y.). Although our preliminary composite record is not continuous (some stages are obviously missing), there is hope that future work will identify these missing intervals in the as yet incomplete Hole 704B and will extend this high-resolution Southern Hemisphere climate record back to 8.6 m.y.
    Keywords: 114-704; 114-704A; 114-704B; COMPCORE; Composite Core; DRILL; Drilling/drill rig; Joides Resolution; Leg114; Ocean Drilling Program; ODP; South Atlantic Ocean
    Type: Dataset
    Format: application/zip, 5 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...