GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Integrated Ocean Drilling Program / International Ocean Discovery Program; IODP  (2)
  • 1 sec resolution; CT; DAM_Underway; DAM Underway Research Data; Maria S. Merian; MSM119; MSM119-track; RIFLOR_2; Underway cruise track measurements  (1)
Document type
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Ikari, Matt J; Ito, Yoshihiro; Ujiie, Kohtaro; Kopf, Achim J (2015): Spectrum of slip behaviour in Tohoku fault zone samples at plate tectonic slip rates. Nature Geoscience, 8(11), 870-874, https://doi.org/10.1038/ngeo2547
    Publication Date: 2023-05-12
    Description: During the 2011 Tohoku-oki earthquake, extremely extensive coseismic slip ruptured shallow parts of the Japan Trench subduction zone and breached the sea floor^1, 2. This part of the subduction zone also hosts slow slip events (SSE)^3, 4. The fault thus seems to have a propensity for slip instability or quasi-instability that is unexpected on the shallow portions of important fault zones. Here we use laboratory experiments to slowly shear samples of rock recovered from the Tohoku-oki earthquake fault zone as part of the Japan Trench Fast Drilling Project. We find that infrequent perturbations in rock strength appear spontaneously as long-term SSE when the samples are sheared at a constant rate of about 8.5 cm yr^-1, equivalent to the plate-convergence rate. The shear strength of the rock drops by 3 to 6%, or 50 kPa to 120 kPa, over about 2 to 4 h. Slip during these events reaches peak velocities of up to 25 cm yr^-1, similar to SSE observed in several circum-Pacific subduction zones. Furthermore, the sheared samples exhibit the full spectrum of fault-slip behaviours, from fast unstable slip to slow steady creep, which can explain the wide range of slip styles observed in the Japan Trench. We suggest that the occurrence of SSE at shallow depths may help identify fault segments that are frictionally unstable and susceptible to large coseismic slip propagation.
    Keywords: Integrated Ocean Drilling Program / International Ocean Discovery Program; IODP
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Ikari, Matt J; Kameda, Jun; Saffer, Demian M; Kopf, Achim J (2015): Strength characteristics of Japan Trench borehole samples in the high-slip region of the 2011 Tohoku-Oki earthquake. Earth and Planetary Science Letters, 412, 35-41, https://doi.org/10.1016/j.epsl.2014.12.014
    Publication Date: 2024-02-10
    Description: The 2011 Tohoku-Oki earthquake demonstrated that the shallowest reaches of plate boundary subduction megathrusts can host substantial coseismic slip that generates large and destructive tsunamis, contrary to the common assumption that the frictional properties of unconsolidated clay-rich sediments at depths less than View the MathML source should inhibit rupture. We report on laboratory shearing experiments at low sliding velocities (View the MathML source) using borehole samples recovered during IODP Expedition 343 (JFAST), spanning the plate-boundary décollement within the region of large coseismic slip during the Tohoku earthquake. We show that at sub-seismic slip rates the fault is weak (sliding friction µs=0.2-0.26), in contrast to the much stronger wall rocks (µs〉~0.5). The fault is weak due to elevated smectite clay content and is frictionally similar to a pelagic clay layer of similar composition. The higher cohesion of intact wall rock samples coupled with their higher amorphous silica content suggests that the wall rock is stronger due to diagenetic cementation and low clay content. Our measurements also show that the strongly developed in-situ fabric in the fault zone does not contribute to its frictional weakness, but does lead to a near-cohesionless fault zone, which may facilitate rupture propagation by reducing shear strength and surface energy at the tip of the rupture front. We suggest that the shallow rupture and large coseismic slip during the 2011 Tohoku earthquake was facilitated by a weak and cohesionless fault combined with strong wall rocks that drive localized deformation within a narrow zone.
    Keywords: Integrated Ocean Drilling Program / International Ocean Discovery Program; IODP
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  MARUM - Center for Marine Environmental Sciences, University Bremen
    Publication Date: 2024-04-20
    Description: Raw data acquired by position sensors on board RV MERIAN during expedition MSM119 were processed to receive a validated master track which can be used as reference of further expedition data. During MSM119 the motion reference unit Kongsberg SeaTex AS MRU-5 combined with Kongsberg SeaTex AS Seapath 320 and the GPS receivers Trimble SPS855 and SAAB R4 were used as navigation sensors. Data were downloaded from DAVIS SHIP data base (https://dship.bsh.de) with a resolution of 1 sec. Processing and evaluation of the data is outlined in the data processing report. Processed data are provided as a master track with 1 sec resolution derived from the position sensors' data selected by priority and a generalized track with a reduced set of the most significant positions of the master track.
    Keywords: 1 sec resolution; CT; DAM_Underway; DAM Underway Research Data; Maria S. Merian; MSM119; MSM119-track; RIFLOR_2; Underway cruise track measurements
    Type: Dataset
    Format: application/zip, 129.2 MBytes
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...