GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-02-25
    Description: The Tsunami Alert Centre of the INGV (CAT-INGV) was created with the aim of contributing to the mitigation of the risk due to tsunamis triggered by earthquakes on the Italian and Mediterranean coasts. Tsunamis of seismic origin, in addition to being the most frequent, are those that can be detected more quickly. Seismic waves, in fact, travel in the crust with a much higher speed than that of tsunami waves. With effective seismic networks connected in real time, an "Early Warning" system can be implemented, i.e. a system capable of sending an alert signal before the arrival of the tsunami waves, at least from a certain distance from the source. The CAT-INGV has two main tasks. The first one is to provide alerts to the competent authorities in the event of potential tsunamigenic earthquakes in the Mediterranean, taking into account the criteria defined by the Department of Civil Protection for this purpose. The second one consists in carrying out the necessary studies for the definition of the probabilistic danger of tsunamis for the Italian coasts, starting from those of seismic origin (Seismic Probabili-stic Tsunami Hazard Analysis, SPTHA). In this contribution the first aspect is described, while the realization of the studies on hazard at the Mediterranean scale is the subject of research described in various recent articles (Lorito et al., 2015; Grezio et al., 2017; Selva et al., 2017a; Selva et al., 2017b). The TSUMAPS-NEAM project, funded by the European Commission and concluded at the end of 2017, provided the first hazard map for the Mediterranean region and the north-east Atlantic (Basili et al., 2017).
    Description: Published
    Description: 91-97
    Description: 5T. Modelli di pericolosità sismica e da maremoto
    Description: N/A or not JCR
    Keywords: Centro Allerta Tsunami ; Maremoto ; Early Warning System ; Tsunamy Warning System ; IOC/NEAMTWS ; rischio ; risk ; sorveglianza ; surveillance ; allerta ; alert ; CENTRO ALLERTA TSUNAMI
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-03-16
    Description: This article has been accepted for publication in Geophysical Journal Internationa ©: 2016 Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.
    Description: We propose a procedure for uncertainty quantification in Probabilistic Tsunami Hazard Analysis (PTHA), with a special emphasis on the uncertainty related to statistical modelling of the earthquake source in Seismic PTHA (SPTHA), and on the separate treatment of subduction and crustal earthquakes (treated as background seismicity). An event tree approach and ensemble modelling are used in spite of more classical approaches, such as the hazard integral and the logic tree. This procedure consists of four steps: (1) exploration of aleatory uncertainty through an event tree, with alternative implementations for exploring epistemic uncertainty; (2) numerical computation of tsunami generation and propagation up to a given offshore isobath; (3) (optional) site-specific quantification of inundation; (4) simultaneous quantification of aleatory and epistemic uncertainty through ensemble modelling. The proposed procedure is general and independent of the kind of tsunami source considered; however, we implement step 1, the event tree, specifically for SPTHA, focusing on seismic source uncertainty. To exemplify the procedure, we develop a case study considering seismic sources in the Ionian Sea (central-eastern Mediterranean Sea), using the coasts of Southern Italy as a target zone. The results show that an efficient and complete quantification of all the uncertainties is feasible even when treating a large number of potential sources and a large set of alternative model formulations. We also find that (i) treating separately subduction and background (crustal) earthquakes allows for optimal use of available information and for avoiding significant biases; (ii) both subduction interface and crustal faults contribute to the SPTHA, with different proportions that depend on source-target position and tsunami intensity; (iii) the proposed framework allows sensitivity and deaggregation analyses, demonstrating the applicability of the method for operational assessments.
    Description: Italian Flagship Project RITMARE, EC FP7 ASTARTE (Grant agreement 603839) and STREST(Grant agreement 603389) projects, Italian FIRB-‘Futuro in Ricerca’ project ‘ByMuR’ (Ref. RBFR0880SR), INGV-DPC Agreement, Annex B2
    Description: Published
    Description: 1780–1803
    Description: 5T. Modelli di pericolosità sismica e da maremoto
    Description: JCR Journal
    Keywords: Probabilistic forecasting ; Tsunamis ; Earthquake interaction ; Europe ; 04.07. Tectonophysics ; 05.06. Methods ; 05.08. Risk ; 05.01. Computational geophysics ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...