GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04.03. Geodesy  (1)
  • AMOC  (1)
  • Age model; Cibicidoides wuellerstorfi B/Ca; Iberian margin  (1)
Document type
Keywords
Publisher
Years
  • 1
    Publication Date: 2024-06-12
    Description: We present a new 150,000-year-long, well-dated, high-resolution deep ocean acidity record, which reveals five hitherto undetected modes of stadial ocean ventilation with different consequences for deep-sea carbon storage and associated atmospheric CO2 changes. The data set contains the age model G. bulloides oxygen isotope, IRD counts, N. pachyderma counting, and C. wuellerstorfi B/Ca ratios from sediment core MD95-2039. We also present the new deep-water carbonate ion reconstructions at MD95-2039 using C. wuellerstorfi B/Ca.
    Keywords: Age model; Cibicidoides wuellerstorfi B/Ca; Iberian margin
    Type: Dataset
    Format: application/zip, 5 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-01-07
    Description: Due to the intrinsic side-looking geometry of synthetic aperture radar (SAR), time series interferometric SAR is only able to monitor displacements in line-of-sight (LOS) direction, which limits the accuracy of displacement measurement in landslide monitoring. This is because the LOS displacement is only a three dimensional projection of real displacement of a certain ground object. Targeting at this problem, a precise digital elevation model (DEM) assisted slope displacement retrieval method is proposed and applied to a case study over the high and steep slope of the Dagushan open pit mine. In the case study, the precise DEM generated by laser scanning is first used to minimize topographic residuals in small baseline subsets analysis. Then, the LOS displacements are converted to slope direction with assistance of the precise DEM. By comparing with ground measurements, relative root mean square errors (RMSE) of the estimated slope displacements reach approximately 12-13% for the ascending orbit, and 5.4-9.2% for the descending orbit in our study area. In order to validate the experimental results, comparison with microseism monitoring results is also conducted. Moreover, both results have found that the largest slope displacements occur on the slope part, with elevations varying from -138 m to -210 m, which corresponds to the landslide area. Moreover, there is a certain correlation with precipitation, as revealed by the displacement time series. The outcome of this article shows that rock mass structure, lithology, and precipitation are main factors affecting the stability of high and steep mining slopes.
    Description: Published
    Description: 6674
    Description: 7SR AMBIENTE – Servizi e ricerca per la società
    Description: JCR Journal
    Keywords: digital elevation model; high and steep slope; landslide monitoring; open-pit mine; small baseline subsets analysis ; 04.03. Geodesy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gu, S., Liu, Z., Oppo, D. W., Lynch-Stieglitz, J., Jahn, A., Zhang, J., & Wu, L. Assessing the potential capability of reconstructing glacial Atlantic water masses and AMOC using multiple proxies in CESM. Earth and Planetary Science Letters, 541, (2020): 11629, doi:10.1016/j.epsl.2020.116294.
    Description: Reconstructing the Atlantic Meridional Overturning Circulation (AMOC) during the Last Glacial Maximum (LGM) is essential for understanding glacial-interglacial climate change and the carbon cycle. However, despite many previous studies, uncertainties remain regarding the glacial water mass distributions in the Atlantic and the AMOC intensity. Here we use an isotope enabled ocean model with multiple geotracers (δ 13 C,E Νd,231 Pa/ 230Th,δ 18 Ο and Δ 14 C) and idealized water tracers to study the potential constraints on LGM ocean circulation from multiple proxies. Our model suggests that the glacial Atlantic water mass distribution can be accurately constrained by the air-sea gas exchange signature of water masses (δ13 C AS), but E Nd might overestimate the North Atlantic Deep Water (NADW) percentage in the deep Atlantic probably because of the boundary source of Nd. A sensitivity experiment with an AMOC of similar geometry but much weaker strength suggests that the correct AMOC geometry is more important than the AMOC strength for simulating the observed glacial δ13 C AS and E Nd and distributions. The kinematic tracer 231Pa/230Th is sensitive to AMOC intensity, but the interpretation might be complicated by the AMOC geometry and AABW transport changes during the LGM. δ 18 Ο in the benthic foraminifera (δ 18 Οc) from the Florida Straits provides a consistent measure of the upper ocean boundary current in the model, which potentially provides an unambiguous method to reconstruct glacial AMOC intensity. Finally, we propose that the moderate difference between AMOC intensity at LGM and PD, if any, is caused by the competition of the responses to CO2 forcing and continental ice sheet forcing.
    Description: We thank two anonymous reviewers for their useful and constructive comments. We also thank Editor Dr Laura F. Robinson for handling the manuscript. This work is supported by National Science Foundation of China No. 41630527, US National Science Foundation (NSF) P2C2 projects (1401778, 1401802, and 1566432). We would like to acknowledge the high-performance computing support from Yellowstone (ark:/85065/d7wd3xhc) and Cheyenne (doi:10.5065/D6RX99HX) provided by NCAR's Computational and Information Systems Laboratory, sponsored by the National Science Foundation and from Center for High Performance Computing and System Simulation, Pilot National Laboratory for Marine Science and Technology (Qingdao). Data used to produce the results in this study can be obtained from HPSS at CISL: /home/sgu28/CTRACE_decadal or by contacting the authors.
    Keywords: Last Glacial Maximum ; AMOC ; Water mass ; Multi-proxy
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...