GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth  (1)
  • DInSAR (differential interferometric synthetic aperture radar)  (1)
  • 1
    Publication Date: 2021-01-11
    Description: The ability of Synthetic Aperture Radar (SAR) to image the Earth's surface, even through dense cloud cover and in night-and-day conditions, can facilitate the evaluation and monitoring of natural hazards and the management of natural disasters. The family of SAR satellite sensors orbits the Earth at an altitude ranging from 500 to 800 km, following sun-synchronous, near-polar orbits, slightly inclined with respect to Earth meridians. The most commonly used bands in SAR applications are the C-band (5–6 GHz, ~5, 6 cm wavelength), the X-band (8–12 GHz, ~3, 1 cm wavelength), and the L-band (1–2 GHz ~23 cm wavelength) with a temporal resolution depending on the satellite revisiting time. The availability of SAR has made a new spectrum of measurements possible on a global and spatial scale not attainable by ground-based studies, revealing critical insights into remote or poorly understood areas (e.g., Biggs et al., 2014). This Research Topics presents a review of articles on the state-of-art in the application of SAR sensors to study surface deformation in different geologic environments and triggered by a variety of processes. The topics discussed range from the analysis of co-seismic deformation (Merryman Boncori) to studies of volcanic unrest (Dzurisin et al.; Garthwaite et al.), monitoring of landslides (Bianchini et al.) and ground subsidence in urban areas (Solari et al.).
    Description: Published
    Description: Article 191
    Description: 5IT. Osservazioni satellitari
    Description: JCR Journal
    Keywords: SAR (Synthetic Aperture Radar) ; InSAR (Interferometric Synthetic Aperture Radar), ; DInSAR (differential interferometric synthetic aperture radar) ; PSInSARTM ; SqueeSARTM algorithm ; SBAS and QPS InSAR techniques ; Multi-temporal InSAR (MT-InSAR)
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-01-07
    Description: We provide a dataset of 3D coordinate time series of 37 continuous GNSS stations installed for stability monitoring purposes on onshore and offshore industrial settlements along a NW-SE-oriented and ~100-km-wide belt encompassing the eastern Italian coast and the Adriatic Sea. The dataset results from the analysis performed by using different geodetic software (Bernese, GAMIT/GLOBK and GIPSY) and consists of six raw position time series solutions, referred to IGb08 and IGS14 reference frames. Time series analyses and comparisons evidence that the different solutions are consistent between them, despite the use of different software, models, strategy processing and frame realizations. We observe that the offshore stations are subject to significant seasonal oscillations probably due to seasonal environmental loads, seasonal temperature-induced platform deformation and hydrostatic pressure variations. Many stations are characterized by non-linear time series, suggesting a complex interplay between regional (long-term tectonic stress) and local sources of deformation (e.g. reservoirs depletion, sediment compaction). Computed raw time series, logs files, phasor diagrams and time series comparison plots are distributed via PANGAEA ( https://www.pangaea.de ).
    Description: This research was financed by the Italian Economic Development Ministry in the”CLYPEA-Innovation Network for Future Energy” framework, “subsoil deformations” project.
    Description: Published
    Description: 373
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: GNSS ; offshore platforms ; subsidence ; data processing ; oil/gas exploiting ; 04. Solid Earth ; 04.03. Geodesy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...