GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-10-29
    Description: Viscosity of hydrous trachytes from the Agnano Monte Spina eruption (Phlegrean Fields, Italy) has been determined at 1.0 GPa and temperatures between 1200 and 1400 °C using the falling sphere method in a piston cylinder apparatus. The H2O content in the melts ranged from 0.18 to 5.81 wt.%. These high-temperature hydrous viscosities, along with previous ones determined at low-temperature (anhydrous and hydrous) and at high-temperature (anhydrous), at 1 atm on the same melt composition, represent the only complete viscosity data set available for K-trachyticmelts, frommagmatic to volcanic conditions.Viscosity decreases with increasing temperature andwater content in the melt.At constant temperature, viscosity appears to significantly decreasewhen the first wt.% ofH2Ois added.At H2O content higher than 3 wt.% the effect of temperature on viscosity is slight. Moreover, the deviation from Arrhenian behaviour towards greater “fragility” occurs with increasing water content. We combined low- and high-temperature viscosities (also from literature) and parameterized themby the use of a modified Vogel–Fulcher–Tamman equation, which accommodates the non-Arrhenian temperature dependence ofmelt viscosity.Moreover, in order to explore the extent to which the improved knowledge of Agnano Monte Spina trachyte viscosity may affect simulation of volcanic eruption at Phlegrean Fields, we included our viscosity models in numerical simulations of magma flow and fragmentation along volcanic conduits. These simulations show that the new parameterizations (and hence the new equations) give stronger predictions in the temperature interval relevant for magmatic and eruptive processes.
    Description: Published
    Description: 124-137
    Description: JCR Journal
    Description: reserved
    Keywords: Viscosity ; Trachyte ; Falling sphere method ; Vogel–Fulcher–Tamman equation ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Determining consistent sets of vent conditions for next expected eruptions at Vesuvius is crucial for the simulation of the sub-aerial processes originating the volcanic hazard and the eruption impact. Herewerefer to the expected eruptive scales and conditions defined in the frame of the EC Exploris project, and simulate the dynamics of magma ascent along the volcanic conduit for sub-steady phases of next eruptions characterized by intensities of the Violent Strombolian (VS), Sub-Plinian 2 (SP2), and Sub-Plinian 1 (SP1) scale. Sets of conditions for the simulations are determined on the basis of the bulk of knowledge on the past history of Vesuvius [Cioni, R., Bertagnini, A., Santacroce, R., Andronico, D., Explosive activity and eruption scenarios at Somma–Vesuvius (Italy): towards a new classification scheme. Journal of Volcanology and Geothermal Research, this issue.]. Volatile contents (H2O and CO2) are parameterized in order to account for the uncertainty in their expected amounts for a next eruption. In all cases the flow in the conduit is found to be choked, with velocities at the conduit exit or vent corresponding to the sonic velocity in the two-phase non-equilibrium magmatic mixture. Conduit diameters and vent mixture densities are found to display minimum overlapping between the different eruptive scales, while exit gas and particle velocities, as well as vent pressures, largely overlap. Vent diameters vary from as low as about 5 m for VS eruptions, to 35–55 m for the most violent SP1 eruption scale. Vent pressures can be as low as less than 1 MPa for the lowest volatile content employed of 2 wt.% H2O and no CO2, to 7–8 MPa for highest volatile contents of 5 wt.% H2O and 2 wt.% CO2 and large eruptive scales. Gas and particle velocities at the vent range from 100–250 m/s, with a tendency to decrease, and to increase the mechanical decoupling between the phases, with increasing eruptive scale. Except for velocities, all relevant vent quantities are more sensitive to the volatile content of the discharged magma for the highest eruptive scales considered.
    Description: Published
    Description: 359-365
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: Vesuvius ; Numerical simulations ; Vent conditions ; Volcanic hazard ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: We have simulated the dynamics of convection, mixing and ascent of two basaltic magmas differing in their volatile and crystal content, giving rise to a gravitationally unstable configuration along a dyke or fissure. Numerical simulations are performed by a recently developed code which describes the transient 2D dynamics of multicomponent fluids from the incompressible to the compressible regime, and the initial and boundary conditions are inspired to the paroxysmal eruption which occurred at Stromboli in 2003 (D'Auria et al. 2006). Multicomponent (H2O+CO2) saturation is accounted for by modelling the non-ideal equilibrium between the gas phase and the melt. The numerical results show the formation of a rising bulge of light magma, and the sink of discrete batches of dense magma towards deep fissure regions. Such dynamics are associated with a complex evolution of the pressure field, which shows variations occurring over a wide spectrum of frequencies. A first order analysis of the propagation of such pressure disturbances through the country rocks shows that the pre-eruptive fissure dynamics are able to produce mm-size, mainly radial deformation of the volcano, and a detectable seismic signal with spectral peaks at periods of about 50 s.
    Description: Published
    Description: 33-44
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: N/A or not JCR
    Description: reserved
    Keywords: Volcano Seismology ; Numerical Simulations ; Fluid-dynamics models ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: We present a numerical code for the simulation of the dynamics of compressible to incompressible, multicomponent ows, based on the _nite element algorithm by Hauke & Hughes (1998). Balance equations for mass, momentum, energy and composition are solved with space-time Galerkin least-squares and discontinuity-capturing stabilizing techniques. The code is used to study the dynamics of convection and mixing in magmatic systems such as replenishment of magma chambers and volcanic conduits, and it reveals the occurrence of previously not described processes. The uid-structure interaction of fully coupled magma-rock dynamics is being implemented by using the deforming-spatial domain method by Tezduyar (2006), that intrinsecally includes moving meshes.
    Description: Published
    Description: 237.1-237.12
    Description: 3.6. Fisica del vulcanismo
    Description: N/A or not JCR
    Description: open
    Keywords: space-time finite element ; fluid-structure interaction ; Navier-Stokes equations ; two-fields formulation ; magma ; rock ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Due to its very low solubility in silicate melts, CO2 concentrations in melt inclusions (MIs) within crystals are commonly orders of magnitude less than the total concentration in the multiphase magma, strongly limiting the possibility to constrain CO2 abundance based on the dissolved quantities. Here we develop a statistical method to process MI data, which allows analytical uncertainties to be taken into account together with the peculiar features of the local saturation surface. The method developed leads to retrieve total H2O and CO2 concentrations in magma as well as the gas phase abundance at the time of magma crystallization. Application to a set of 29 high-resolution secondary ion mass spectrometry (SIMS) MI data from a single specimen of the 1842–1844 eruption of Kilauea, Hawaii, reveals the existence of heterogeneous total CO2 abundance, and of at least 2–6 wt % total CO2 in some magma batches, two orders of magnitude higher than the dissolved amounts and 30–50 times more abundant than the corresponding total H2O content. Heterogeneous total volatile concentrations are interpreted as due to a combination of degassing and gas flushing in magma subject to convective motion at shallow depth where P 〈 100 MPa. In such a view, the magma rising to shallow depth in the volcanic system carries initially a total volatile content ≤1 wt %, corresponding to the determined low total CO2 population, and consistent with previous global estimates. The high CO2 populations correspond to progressive CO2 enrichment due to degassing at low P and flushing from a deep CO2-rich gas. A total CO2 content 〉1 wt % is likely to characterize the 〉30 km deep magma, not represented in the analyzed inclusions, from which a CO2-rich gas phase exsolves and decouples from the liquid.
    Description: Published
    Description: B12201
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: carbon dioxide ; Kilauea volcano ; conduit dynamics ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: We present a numerical approach for modelling the complex sub-surface volcanic processes and associated geophysical signals. This method is based on the one-way coupling of the dynamics of a magmatic system and the response of the host rocks. The two systems are modelled independently, by two different numerical codes, that solve the equations of motion for the magmatic fluid and the equation of elasto-dynamics for wave propagation in the surrounding medium, respectively. Synthetic geophysical signals can be obtained and compared with those recorded by monitoring networks. The final aim is to understand how the complex physics of magma dynamics, coupled to its hosting medium, translates into geophysical data that can be measured and interpreted in order to understand sub-surface magma dynamics and forecast the short-term volcanic hazard. We applied this method to the Campi Flegrei volcanic system (southern Italy) and investigated the convection and mixing dynamics induced by the arrival of new CO2-rich magma into a hypothetical shallow magma chamber. The pressure waves originated by this system are propagated in the surrounding rocks, and the associated broad-band ground displacement and gravity anomalies are evaluated at the Earth’s surface.
    Description: Published
    Description: 162-174
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 3.6. Fisica del vulcanismo
    Description: reserved
    Keywords: magma flow dynamics ; magma chamber ; magmatic pressure ; volcano monitoring ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: The thermofluid dynamics of pyroclastic flows down the slopes of Vesuvius (Italy) were investigated using physical modeling of the magma ascent and pyroclastic dispersal processes. The expected properties and conditions of the magma, such as its anhydrous composition, water content, and temperature, were based on the present knowledge of the magmatic system and were used as input data for the magma ascent model. The predicted vent conditions were used to define the boundary conditions for the simulation of pyroclastic flow dispersal along selected two-dimensional axisymmetric profiles, representative of the southern and northern slopes of Vesuvius. The model employed describes the temporal evolution of a three-phase mixture composed of a continuous gas phase and two solid phases representative of fine and coarse particles. The specific terrain roughness of the slopes of Vesuvius, caused by the presence of pine woods and urban settlements, was also estimated and accounted for by the model. Several simulations were carried out by assuming different magmatic compositions (in terms of water content and temperature), eruption intensities, topographic profiles, and flow duration. Pyroclastic flow dynamics appear to be strongly influenced by the fountain and atmospheric dynamics showing complex, unsteady, and, in some cases, non-intuitive behaviors. The mass flow-rate per unit angle of propagation of the flow proves to be the most critical parameter controlling the run-out and, therefore, the hazard on the slopes of Vesuvius. The two-dimensional topographic profiles employed also appear to significantly affect the flow propagation. Simulation outputs allow the quantification of the spatial and temporal evolution of several flow variables that are critical in hazard mitigation studies. The analysis of these variables is extensively described in a companion paper (Esposti Ongaro et al. 2002, this volume).
    Description: Published
    Description: 155-177
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Hazard · Mitigation · Numerical simulation · Pyroclastic flows · Vesuvius ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: A general methodology of pyroclastic fall hazard assessment is proposed on the basis of integrated results of field studies and numerical simulations. These approaches result in two different methods of assessing hazard: (1) the ‘‘field frequency,’’ based on the thickness and distribution of past deposits and (2) the ‘‘simulated probability,’’ based on the numerical modeling of tephra transport and fallout. The proposed methodology mostly applies to volcanoes that, by showing a clear correlation between the repose time and the magnitude of the following eruptions, allows the definition of a reference ‘‘maximum expected event’’ (MEE). The application to Vesuvius is shown in detail. Using the field frequency method, stratigraphic data of 24 explosive events in the 3–6 volcanic explosivity index range in the last 18,000 years of activity are extrapolated to a regular grid in order to obtain the frequency of exceedance in the past of a certain threshold value of mass loading (100, 200, 300, and 400 kg/m2). Using the simulated probability method, the mass loading related to the MEE is calculated based on the expected erupted mass (5 1011 kg), the wind velocity profiles recorded during 14 years, and various column heights and grain-size populations. The role of these factors was parametrically studied performing 160,000 simulations, and the probability that mass loading exceeded the chosen threshold at each node was evaluated. As a general rule, the field frequency method results are more reliable in proximal regions, provided that an accurate database of field measurements is available. On the other hand, the simulated probability method better describes events in middle distal areas, provided that the MEE magnitude can be reliably assumed. In the Vesuvius case, the integration of the two methods results in a new fallout hazard map, here presented for a mass loading value of 200 kg/m2.
    Description: Published
    Description: 2063-2083
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: open
    Keywords: pyroclastic flows, numerical simulations ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Geological Society of London
    Publication Date: 2017-04-04
    Description: Arrival of magma from depth into shallow reservoirs has been documented as one of the possible processes leading to eruption. Magma intruding and rising to the surface interacts with the already emplaced, degassed magmas residing at shallower depths, leaving chemical signatures in the erupted products.We performed two-dimensional numerical simulations of the arrival of gas- rich magmas into shallow reservoirs. We solve the fluid dynamics for the two interacting magmas, evaluating the space–time evolution of the physical properties of the mixture. Convection and mingling develop quickly into the chamber and feeding conduit/dyke, leading on longer timescales to a density stratification with the lighter, gas-richer magma, mixed with different proportions of the resident magma, rising to the top of the chamber due to buoyancy. Over timescales of hours, the magmas in the reservoir appear to have mingled throughout, and convective patterns become harder to identify. Our simulations have been performed changing the geometry of the shallow reservoir and the gas content of the initial end-member magmas. Horizontally elongated magma chambers, as well as higher density contrasts between the two magmas, cause faster ascent velocities and also increase the mixing efficiency.
    Description: Published
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: embargoed_20160601
    Keywords: magma mingling ; magma reservoir dynamics ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Elsevier Science Limited
    Publication Date: 2017-04-04
    Description: Etna poses risks to inhabited areas with its frequent effusive eruptions. During the 1989 and 1991 eruptions the Italian Department of Civil Protection diverted the lava from its natural path into an artificial channel, reducing the risk of lava inundation. The intervention resulted in the creation of a bifurcation between the natural and the artificial channels. In this paper magma dynamics in the bifurcation is investigated by solving the equations of mass and momentum balance with a simplified two-dimensional geometry, describing magma as an homogeneous, isothermal incompressible fluid with Newtonian rheology. Results show the important role played by the slope of the artificial channel and the effect of the width of the artificial mouth on the efficiency of the diversion.
    Description: Published
    Description: 953-956
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: lava flow ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...