GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-11-19
    Description: We report on new stratigraphic, palaeomagnetic and anisotropy of magnetic susceptibility (AMS) results from the Amantea basin, located on-shore along the Tyrrhenian coast of the Calabrian Arc (Italy). The Miocene Amantea Basin formed on the top of a brittlely extended upper plate, separated from a blueschist lower plate by a low-angle top-to-the-west extensional detachment fault. The stratigraphic architecture of the basin is mainly controlled by the geometry of the detachment fault and is organized in several depositional sequences, separated by major unconformities. The first sequence (DS1) directly overlaps the basement units, and is constituted by Serravallian coarse-grained conglomerates and sandstones. The upper boundary of this sequence is a major angular unconformity locally marked by a thick palaeosol (type 1 sequence boundary). The second depositional sequence DS2 (middle Tortonian-early Messinian) is mainly formed by conglomerates, passing upwards to calcarenites, sandstones, claystones and diatomites. Finally, Messinian limestones and evaporites form the third depositional sequence (DS3). Our new biostratigraphic data on the Neogene deposits of the Amantea basin indicate a hiatus of 3 Ma separating sequences DS1 and DS2. The structural architecture of the basin is characterized by faulted homoclines, generally westward dipping, dissected by eastward dipping normal faults. Strike-slip faults are also present along the margins of the intrabasinal structural highs. Several episodes of syn-depositional tectonic activity are marked by well-exposed progressive unconformities, folds and capped normal faults. Three main stages of extensional tectonics affected the area during Neogene-Quaternary times: (1) Serravallian low-angle normal faulting; (2) middle Tortonian high-angle syn-sedimentary normal faulting; (3) Messinian-Quaternary high-angle normal faulting. Extensional tectonics controlled the exhumation of high-P/low-T metamorphic rocks and later the foundering of the Amantea basin, with a constant WNW-ESE stretching direction (present-day coordinates), defined by means of structural analyses and by AMS data. Palaeomagnetic analyses performed mainly on the claystone deposits of DSl show a post-Serravallian clockwise rotation of the Amantea basin. The data presented in this paper constrain better the overall timing, structure and kinematics of the early stages of extensional tectonics of the southern Tyrrhenian Sea. In particular, extensional basins in the southern Tyrrhenian Sea opened during Serravallian and evolved during late Miocene. These data confirm that, at that time, the Amantea basin represented the conjugate extensional margin of the Sardinian border, and that it later drifted south-eastward and rotated clockwise as a part of the Calabria-Peloritani terrane.
    Description: Published
    Description: 147-168
    Description: JCR Journal
    Description: reserved
    Keywords: paleomagnetism ; structural geology ; syn-sedimentary tectonics ; Amantea ; Calabria ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Elsevier
    In:  Capponi, G., et al., Comment on “Subduction polarity reversal at the junction between the Western Alps and the Northern Apennines, Italy, by G. Vignaroli..., Tectonophysics (2008), doi:10.1016/j.tecto.2008.10.019
    Publication Date: 2017-04-04
    Description: Reply to comment
    Description: We first would like to thank Capponi et al. (2008) for their comments and criticisms on our paper, offering us the opportunity to discuss the data and the model presented in Vignaroli et al. (2008a) and clarify the geological rationale behind our manuscript. Vignaroli et al. (2008a) presented a large-scale reconstruction on the evolution of the Western Alpine-Northern Apennine junction, based on shallow geological information derived from the Northern Apennines, the Western and Ligurian Alps coupled with deep mantle structures from seismic tomography and tectonic reconstructions. The aim of this paper is then to give an alternative, though simplified, tectonic solution to the long-standing debate concerning the polarity of the subduction zone in the central Mediterranean and its linkage with the Alpine orogeny and the formation of the arcs belt. We condensed and simplified the huge wealth of geological information using cross-sections along the three orogenic segments. One of the main points of the paper is that the Voltri Massif of the Ligurian Alps is reinterpreted as an eclogitic-bearing domain exhumed by means of ductile-to-brittle extensional detachment tectonics with a top-to-the-W sense of shear. In this view, the orogenic architecture and evolution of the Ligurian Alps presents affinities (both for geometry and timing of deformation) with the widely accepted extensional structures recognized in the Western Alps, in the Northern Apennines and, in general, in Alpine-type orogenic belts of the Mediterranean. The detailed comment made by Capponi et al. (2008) is indeed centred on the tectonic structure of the Voltri Massif (probably this comment should have been addressed to our companion paper, Vignaroli et al., 2008b, focused on the Voltri Massif structures and available on-line on March 2008). The main point of the comment is that the exhumation of High-Pressure (HP) metamorphic units exposed in the Voltri Massif was produced by thrusts rather than by syn- orogenic extensional detachments. In this reply, we would first like to make some general considerations on the criteria/concepts adopted for the interpretation of the exhumation-related structures and we will then discuss point-by-point the criticism of Capponi et al. (2008).
    Description: In press
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: partially_open
    Keywords: Western Alps ; Northern Apennines ; Voltri Massif ; kinematic reconstruction ; subduction ; extensional detachment ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...