GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-04
    Description: Currently biogeochemical models of the global ocean focus on simulating the coupling between prevalent physical conditions and the biogeochemical processes with the underlying assumption that coherent biological properties are a direct (or modulated) response to physics. This is one possible biogeographic characterisation of the pelagic environment, since biogeochemistry represents only one aspect of marine ecosystems. Several models are currently capable of simulating the chlorophyll distribution observed from space, though an objective validation with respect to relevant ecosystem properties is still lacking. In this paper we analyse the results of one of the most comprehensive models of ocean biogeochemistry with an emphasis on biogeographic validation sensu Longhurst (Ecological Geography of the Sea, 2007, 2nd edition, Academic Press). A set of multivariate statistical tools, Multi Dimensional Scaling (MDS) and Principal Components Analysis (PCA), are used to verify the existence of pre-defined biogeographic provinces and their statistical significance. The MDS ordination indicates that the given provinces are recognizable in the model on the basis of the selected variables. Analysis of Similarity (ANOSIM) shows that the provinces are statistically separable and they can be more easily distinguished in terms of their environmental features rather than their biology. The underlying relationships between the physical and biological properties are investigated through correlation analyses, thus providing some insights on how the model reproduces features characteristic of the various regions. Satellite chlorophyll data have been used to demonstrate external validation at the biogeographic level. The a priori provinces as characterised by chlorophyll values cannot be statistically separated in either the data or the model. It is likely this is related to the arbitrary choice of province boundaries, which are not necessarily the same as those derivable from non-interpolated SeaWiFS data. The PCA comparison of modelled and observed chlorophyll demonstrated some objective skill in the model as it generally captures the dominant mode of the data, although severe mismatch was identified in certain regions by visual comparison (Indian and Southern Oceans). The model also overestimated seasonal variability compared to the data. The method shows promise for helping overcome problems with model verification due to undersampling of most ocean biogeochemical variables.
    Description: EUR-OCEANS, CMCC
    Description: Submitted
    Description: 1-51
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: open
    Keywords: Biogeochemical model ; global ocean ; general circulation ; ERSEM ; PELAGOS ; BFM ; biogeography ; 03. Hydrosphere::03.01. General::03.01.01. Analytical and numerical modeling ; 03. Hydrosphere::03.01. General::03.01.07. Physical and biogeochemical interactions ; 03. Hydrosphere::03.04. Chemical and biological::03.04.01. Biogeochemical cycles ; 03. Hydrosphere::03.04. Chemical and biological::03.04.04. Ecosystems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: manuscript
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: The concept of ocean biogeochemical provinces is based on the observation that large ocean regions are characterized by coherent physical forcing and environmental conditions, which are eventually representative of macroscale ocean ecosystems. Biogeochemical models of the global ocean focus on simulating the coupling between prevalent physical conditions and the biogeochemical processes with the assumption that biological properties respond coherently to physics and therefore should produce such provinces as an emergent property. In this paper, we quantitatively assess the emergence of a reference set of predefined biogeochemical provinces in the available global data sets and propose a province‐based approach to the evaluation of one of the most comprehensive models of ocean biogeochemistry. Multivariate statistical tools were applied to model and observation data, verifying the existence, distinctiveness and reliability of the predefined provinces and quantifying the correlation of model results with observations at the global scale. The analysis of similarity between provinces shows that they are statistically separable in data and model output and therefore can be used as reliable metrics. The analyses indicate that provinces can be more easily distinguished in terms of their environmental features rather than using chlorophyll concentration. The characterization of provinces by means of chlorophyll values shows a significant overlap in both the Sea‐viewing Wide Field‐of‐view Sensor (SeaWiFS) data and the model. It is likely this is related to the choice of province boundaries based on coarse‐resolution mapped data, which are not necessarily the same as those derivable from high‐resolution satellite data. We also demonstrated through cluster analysis that the long‐term time series data collected at Joint Global Ocean Flux Study (JGOFS) stations are representative of environmental conditions of the respective province and can thus be used to evaluate model results extracted from that province. The method shows promise for helping to overcome problems with model verification due to under sampling of most ocean biogeochemical variables but also gives indications that unsupervised clustering may be required when more spatially resolved data and models are available.
    Description: Published
    Description: GB2005
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: restricted
    Keywords: PELAGOS ; ocean modelling ; 03. Hydrosphere::03.04. Chemical and biological::03.04.99. General or miscellaneous ; 03. Hydrosphere::03.04. Chemical and biological::03.04.01. Biogeochemical cycles ; 03. Hydrosphere::03.04. Chemical and biological::03.04.02. Carbon cycling ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.04. Ecosystems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-12-09
    Description: A mechanistic explanation for the accumulation of dissolved organic carbon (DOC), observed in coastal seas such as the Northern Adriatic Sea, is proposed here on the basis of numerical simulations of the marine ecosystem dynamics carried out with a coupled biogeochemical-circulation model. The biogeochemical model is based on the European Regional Seas Ecosystem Model (ERSEM) upgraded with a more detailed representation of the DOC-bacteria interactions and resolving different level of DOC lability/refractivity. The circulation model is the Adriatic Sea implementation of the Princeton Ocean Model. The analysis of simulations confirms the important role of the Po river nutrient input on the ecosystem dynamics and highlights the presence of a strong across-shelf trophic gradient that, affecting the Bacterial Growth Efficiency (BGE), could be a key factor for the DOC accumulation. The simulations show the importance of circulation features in modulating the exchanges between areas having different trophic structure such as the western coastal strip, strongly influenced by the Po river runoff, and the open sea areas in the centre of the northern Adriatic sub-basin. The DOC produced in the high energy system of the Po runoff coastal strip, characterized by high BGE, is transported toward the open areas, which is a more oligotrophic environment with lower BGE. In this area the DOC turnover time is strongly increased giving rise to the DOC accumulation.
    Description: The leading author of this paper was supported by a Ph.D. fellowship given to the Environmental Science graduate program of the University of Bologna at Ravenna and by the VECTOR project funded by the Italian Ministry of Research and University. N. Pinardi and M. Zavatarelli were partially supported by the MFSTEP project (EU contract EVK3-CT-2002-00075) and the ADRICOSM Project (funded by the Italian Ministry of Environment and Territory, Division of Environmental Research and Development). Icarus Allen and Marcello Vichi acknowledge the support by the EUR-OCEANS network of excellence (contract 511106).
    Description: Published
    Description: C03S20
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: reserved
    Keywords: Carbon cycling ; Marine systems ; Ecosystems, structure and dynamics ; Biogeosciences ; 01. Atmosphere::01.01. Atmosphere::01.01.05. Radiation ; 03. Hydrosphere::03.01. General::03.01.01. Analytical and numerical modeling ; 03. Hydrosphere::03.01. General::03.01.07. Physical and biogeochemical interactions ; 03. Hydrosphere::03.04. Chemical and biological::03.04.01. Biogeochemical cycles ; 03. Hydrosphere::03.04. Chemical and biological::03.04.04. Ecosystems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...