GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 03. Hydrosphere::03.01. General::03.01.01. Analytical and numerical modeling  (13)
Document type
Years
  • 1
    Publication Date: 2017-04-04
    Description: This document describes the NEMO-OPA (Nucleus for European Modelling of the Ocean, Ocean PArallelise) Ocean General Circulation Model (OGCM) in the configuration ORCAR025 implemented at CMCC. In the first part it gives a description of the most important technical aspects of the model, the physical parameterization adopted and the forcing used. In the second part, the results of the benchmarks on the vector and scalar systems of the CMCC Computer Center are presented and compared.
    Description: Centro Euro-Mediterraneo per i Cambiamenti Climatici, Bologna, Italy Istituto Nazionale di Geofisica e Vulcanologia, Bologna, Italy
    Description: Published
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: open
    Keywords: ocean modelling ; 03. Hydrosphere::03.01. General::03.01.01. Analytical and numerical modeling
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: The set of equations for global ocean biogeochemistry deterministic models have been formulated in a comprehensive and unified form in order to use them in numerical simulations of the marine ecosystem for climate change studies (PELAGOS, PELAgic biogeochemistry for Global Ocean Simulations). The fundamental approach stems from the representation of marine trophic interactions and major biogeochemical cycles introduced in the European Regional Seas Ecosystem Model (ERSEM). Our theoretical formulation revisits and generalizes the stoichiometric approach of ERSEM by defining the state variables as Chemical Functional Families (CFF). CFFs are further subdivided into living, non-living and inorganic components. Living CFFs are the basis for the definition of Living Functional Groups, the biomass-based functional prototype of the real organisms. Both CFFs and LFGs are theoretical constructs which allow us to relate measurable properties of marine biogeochemistry to the state variables used in deterministic models. This approach is sufficiently generic that may be used to describe other existing biomass-based ecosystem model.
    Description: Published
    Description: 89-109
    Description: JCR Journal
    Description: reserved
    Keywords: Marine biogeochemistry ; Biomass-based ecosystem model ; 03. Hydrosphere::03.01. General::03.01.01. Analytical and numerical modeling ; 03. Hydrosphere::03.01. General::03.01.07. Physical and biogeochemical interactions ; 03. Hydrosphere::03.04. Chemical and biological::03.04.01. Biogeochemical cycles
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: This paper presents a global ocean implementation of a multi-component model of marine pelagic biogeochemistry coupled on-line with an ocean general circulation model forced with climatological surface fields (PELAgic biogeochemistry for Global Ocean Simulations, PELAGOS). The final objective is the inclusion of this model as a component in an Earth System model for climate studies. The pelagic model is based on a functional stoichiometric representation of marine biogeochemical cycles and allows simulating the dynamics of C, N, P, Si, O and Fe taking into account the variation of their elemental ratios in the functional groups. The model also includes a parameterization of variable chlorophyll/carbon ratio in phytoplankton, carrying chl as a prognostic variable. The first part of the paper analyzes the contribution of non-local advective–diffusive terms and local vertical processes to the simulated chl distributions. The comparison of the three experiments shows that the mean chl distribution at higher latitudes is largely determined by mixing processes, while vertical advection controls the distribution in the equatorial upwelling regions. Horizontal advective and diffusive processes are necessary mechanisms for the shape of chl distribution in the sub-tropical Pacific. In the second part, the results have been compared with existing datasets of satellite-derived chlorophyll, surface nutrients, estimates of phytoplankton community composition and primary production data. The agreement is reasonable both in terms of the spatial distribution of annual means and of the seasonal variability in different dynamical oceanographic regions. Results indicate that some of the model biases in chl and surface nutrients distributions can be related to deficiencies in the simulation of physical processes such as advection and mixing. Other discrepancies are attributed to inadequate parameterizations of phytoplankton functional groups. The model has skill in reproducing the overall distribution of large and small phytoplankton but tends to underestimate diatoms in the northern higher latitudes and overestimate nanophytoplankton with respect to picoautotrophs in oligotrophic regions. The performance of the model is discussed in the context of its use in climate studies and an approach for improving the parameterization of functional groups in deterministic models is outlined.
    Description: We thank the Goddard Space Flight Center DAAC for SeaWiFS and CZCS satellite data and Yves Dandonneau for the GeP&CO pigment data and methodological explanations. We also acknowledge the availability of data from the US and International JGOFS websites and from the World Ocean Database. We acknowledge the support by the EU projects ENSEMBLES [project no. GOCE-CT-2003-505539] and DYNAMITE [project no. 00393(GOCE)]. We thank Job Baretta and an anonymous reviewer for their critical comments, which helped us to improve the manuscript.
    Description: Published
    Description: 110-134
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: reserved
    Keywords: Global biogeochemical cycles ; Ocean general circulation model ; Ecosystem model ; OPA ; ERSEM ; PELAGOS ; 03. Hydrosphere::03.01. General::03.01.01. Analytical and numerical modeling ; 03. Hydrosphere::03.01. General::03.01.07. Physical and biogeochemical interactions ; 03. Hydrosphere::03.04. Chemical and biological::03.04.01. Biogeochemical cycles ; 03. Hydrosphere::03.04. Chemical and biological::03.04.02. Carbon cycling ; 03. Hydrosphere::03.04. Chemical and biological::03.04.04. Ecosystems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Copernicus Publications on behalf of the European Geosciences Union
    Publication Date: 2017-04-04
    Description: Global Ocean Biogeochemistry General Circulation Models are useful tools to study biogeochemical processes at global and large scales under current climate and future scenario conditions. The credibility of future estimates is however dependent on the model skill in capturing the observed multi-annual variability of firstly the mean bulk biogeochemical properties, and secondly the rates at which organic matter is processed within the food web. For this double purpose, the results of a multi-annual simulation of the global ocean biogeochemical model PELAGOS have been objectively compared with multi-variate observations from the last 20 years of the 20th century, both considering bulk variables and carbon production/consumption rates. Simulated net primary production (NPP) is comparable with satellite-derived estimates at the global scale and when compared with an independent data-set of in situ observations in the equatorial Pacific. The usage of objective skill indicators allowed us to demonstrate the importance of comparing like with like when considering carbon transformation processes. NPP scores improve substantially when in situ data are compared with modeled NPP which takes into account the excretion of freshly-produced dissolved organic carbon (DOC). It is thus recommended that DOC measurements be performed during in situ NPP measurements to quantify the actual production of organic carbon in the surface ocean. The chlorophyll bias in the Southern Ocean that affects this model as well as several others is linked to the inadequate representation of the mixed layer seasonal cycle in the region. A sensitivity experiment confirms that the artificial increase of mixed layer depths towards the observed values substantially reduces the bias. Our assessment results qualify the model for studies of carbon transformation in the surface ocean and metabolic balances. Within the limits of the model assumption and known biases, PELAGOS indicates a net heterotrophic balance especially in the more oligotrophic regions of the Atlantic during the boreal winter period. However, at the annual time scale and over the global ocean, the model suggests that the surface ocean is close to a weakly positive autotrophic balance in accordance with recent experimental findings and geochemical considerations.
    Description: Centro Euro-Mediterraneo per i Cambiamenti Climatici, Bologna, Italy
    Description: Published
    Description: 2333–2353
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: open
    Keywords: general circulation model ; biogeochemical model ; BFM ; PELAGOS ; global ocean ; ocean metabolism ; 03. Hydrosphere::03.01. General::03.01.01. Analytical and numerical modeling ; 03. Hydrosphere::03.01. General::03.01.02. Equatorial and regional oceanography ; 03. Hydrosphere::03.01. General::03.01.07. Physical and biogeochemical interactions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: One of the main objectives of the global ocean modelling activities at Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC) is the production of global ocean re-analyses over multidecadal periods to reconstruct the state of the ocean and the large scale cir- culation over the recent past. The re-analyses are used for climate applications and for the assessment of the benefits of assimilating ocean observations on seasonal and longer predictions. Here we present the main characteristics of an optimal interpola- tion based assimilation system used to produce a set of global ocean re-analyses validated against a set of high quality in situ observa- tions and independent data. Differences among the experiments of the set are analyzed in terms of improvements in the method used to assimilate the data and the quality of observations them- selves. For example, the integrated ocean heat content, which can be taken as an indicator of climate changes, is examined to detect possible sources of uncertainty of its long-term changes. Global and basin scale upper ocean heat content exhibits warming trends over the last few decades that still depend in a significant way on the assimilated observations and the formulation of the background covariances. However, all the re-analyses show a global warming trend of the oceanic uppermost 700 m over the last five decades that falls within the range of the most recent observation-based estimates. The largest discrepancies between our estimates and observational based ones are confined in the upwelling regions of the PacificandAtlanticOceans.Finally,theresultsshow that the climatological heat and salt transports as a function of latitude also fall within the range of the estimates based on observations and atmospheric re-analyses.
    Description: The authors wish to thank the Centro Euro-Mediterraneo per i Cambiamenti Climatici for its financial and scientific support of some of the activities presented in this work. The implementation and the following improvements of the global ocean assimilation system were carried out in the framework of the ENACT(EVK2-CT2001-00117)and ENSEMBLES(GOCE-CT-2003-505539)projects.
    Description: Published
    Description: 341– 366
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: partially_open
    Keywords: Data assimilation ; Global ocean ; Numerical models ; Climate ; 03. Hydrosphere::03.01. General::03.01.01. Analytical and numerical modeling ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models ; 03. Hydrosphere::03.01. General::03.01.04. Ocean data assimilation and reanalysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: The global climate response to solar radiation absorbed by phytoplankton is investigated by performing multi-century simulations with a coupled ocean–atmosphere-biogeochemistry model. The absorption of solar radiation by phytoplankton increases radiative heating in the near-surface ocean and raises sea surface temperature (SST) by overall ~0.5°C. The resulting increase in evaporation enhances specific atmospheric humidity by 2–5%, thereby increasing the Earth’s greenhouse effect and the atmospheric temperatures. The Hadley Cell exhibits a weakening and poleward expansion, therefore reducing cloudiness at subtropical-middle latitudes and increasing it at tropical latitudes except near the Equator. Higher SST at polar latitudes reduces sea ice cover and albedo, thereby increasing the high-latitude ocean absorption of solar radiation. Changes in the atmospheric baroclinicity cause a poleward intensification of mid-latitude westerly winds in both hemispheres. As a result, the North Atlantic Ocean meridional overturning circulation extends more northward, and the equatorward Ekman transport is enhanced in the Southern Ocean. The combination of local and dynamical processes decreases upper-ocean heat content in the Tropics and in the subpolar Southern Ocean, and increases it at middle latitudes. This study highlights the relevance of coupled ocean–atmosphere processes in the global climate response to phytoplankton solar absorption. Given that simulated impacts of phytoplankton on physical climate are within the range of natural climate variability, this study suggests the importance of phytoplankton as an internal constituent of the Earth’s climate and its potential role in participating in its long-term climate adjustments.
    Description: Published
    Description: 1951-1968
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: restricted
    Keywords: Earth System Model ; 03. Hydrosphere::03.01. General::03.01.01. Analytical and numerical modeling ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models ; 03. Hydrosphere::03.01. General::03.01.07. Physical and biogeochemical interactions ; 03. Hydrosphere::03.03. Physical::03.03.04. Upper ocean and mixed layer processes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.01. Biogeochemical cycles ; 03. Hydrosphere::03.04. Chemical and biological::03.04.02. Carbon cycling
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-03
    Description: A global ocean three-dimensional variational data assimilation system was developed with the aim of assimilating along-track sea level anomaly observations, along with in situ observations from bathythermographs and conventional sea stations. All the available altimetric data within the period October 1992–January 2006 were used in this study. The sea level corrections were covariated with vertical profiles of temperature and salinity according to the bivariate definition of the background-error vertical covariances. Sea level anomaly observational error variance was carefully defined as a sum of instrumental, representativeness, observation operator, and mean dynamic topography error variances. The mean dynamic topography was computed from the model long-term mean sea surface height and adjusted through an optimal interpolation scheme to account for observation minus first-guess biases. Results show that the assimilation of sea level anomaly observations improves the model sea surface height skill scores as well as the subsurface temperature and salinity fields. Furthermore, the estimate of the tropical and subtropical surface circulation is clearly improved after assimilating altimetric data. Nonnegligible impacts of the mean dynamic topography used have also been found: compared to a gravimeter-based mean dynamic topography the use of the mean dynamic topography discussed in this paper improves both the consistency with sea level anomaly observations and the verification skill scores of temperature and salinity in the tropical regions. Furthermore, the use of a mean dynamic topography computed from the model long-term sea surface height mean without observation adjustments results in worsened verification skill scores and highlights the benefits of the current approach for deriving the mean dynamic topography.
    Description: European Commission WP4 Fondazione Cassa di Risparmio di Bologna Cnes
    Description: Published
    Description: 738-754
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: 4.6. Oceanografia operativa per la valutazione dei rischi in aree marine
    Description: 5.4. Banche dati di geomagnetismo, aeronomia, clima e ambiente
    Description: JCR Journal
    Description: partially_open
    Keywords: Data assimilation ; Satellite observations ; Ocean models ; Sea level ; In situ observations ; Variational analysis ; 03. Hydrosphere::03.01. General::03.01.01. Analytical and numerical modeling ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models ; 03. Hydrosphere::03.01. General::03.01.04. Ocean data assimilation and reanalysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: Unstable oscillations confined within the mixed layer close to the equator are generated in wind-forced experiments performed in a multilevel general circulation model configured for the tropical Pacific Ocean. The experiments indicate that the waves develop preferentially in the eastern Pacific along the northern temperature front. However, there is clear evidence of a second unstable region along the southern temperature front in the central Pacific. In both regions the instabilities propagate westward, but in the central Pacific their phase speed is considerably smaller. The differences between the wave characteristics in the eastern and central Pacific are closely correlated to the differences in the time mean conditions of the flow. The eastern instabilities have a structure with two peaks in amplitude: one located on the equator and the other a few degrees north of it. Their dispersion characteristics show many similarities to those of tropical instability waves (TIWs) observed in the Pacific Ocean, while the instabilities which grow in the central Pacific do not have any known observed correspondents. We explore the spatial variability of the simulated waves through a wavelet analysis, which provides detailed results on how the period and wavelength of the instabilities change as a function of longitude, latitude, and depth. The wavelet analysis reveals that in the eastern Pacific and close to the surface the TIWs have a phase speed of-48 cm/s, while in the central Pacific they have a phase speed of-11 cm/s. In particular, the change in the phase speed is due to a change in the dominant period of the TIWs: The period of the central Pacific instabilities is considerably longer than the period of the instabilities present in the eastern Pacific.
    Description: This work was supported by the Department of Commerce/NOAA grant NA56GP0026. One of the authors (SM) was partially supported by a NASA Global Change Fellowship NGT-30288.
    Description: Published
    Description: 29613-29635
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: restricted
    Keywords: Ocean modeling ; Equatorial Ocean ; Tropical Instability Waves ; 03. Hydrosphere::03.01. General::03.01.01. Analytical and numerical modeling
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: The instability processes which generate unstable waves with chara- cteristics similar to observed tropical instability waves in the Pacific Ocean are examined through a local energy analysis based on deviations from the time mean flow. Numerical experiments indicate that the waves develop preferentially in the eastern Pacific along the northern temperature front and have a westward phase speed and a structure with two peaks in amplitude: one located on the equator and the other a few degrees north of it. The energy analysis shows that the "two-peak" structure of the eastern waves is explained by two different instability processes which occur at different latitudes. In the time mean sense the region north of the equator is baroclinically unstable, while barotropic instability prevails at the equator. The life cycle of the waves is revealed by the time evolution of the energetics. Baroclinic instability is the dominant triggering mechanism which induces growth of the waves along the northern temperature front. The eddy pressure fluxes radiate energy south of the equator where the rneridional shear between the Equatorial Undercurrent and the South Equatorial Current becomes barotropically unstable. From the numerical simulations, there is evidence of a second unstable region in the central Pacific south of the equator where the instabilities have a lower phase speed. The energy analysis also shows that these waves grow from both barotropic and baroclinic conversions.
    Description: This work was supported by the Department of Com- merce/NOAA under grant NA56GP0026. One of the au- thors (SM) was partially supported by a NASA Global Change Fellowship NGT-30288. Another author (AB) was supported by a UCAR Postdoctoral Fellowship
    Description: Published
    Description: 29637-29661
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: restricted
    Keywords: Ocean modeling ; Equatorial Ocean ; Tropical Instability Waves ; Ocean wave generation ; Ocean wave energetics ; 03. Hydrosphere::03.01. General::03.01.01. Analytical and numerical modeling
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: The author is indebted to S. G. Philander for his assistance throughout this study which was mostly carried out at Princeton University. I thank A. B. G. Bush for reading an earlier version of the manuscript and making many helpful comments. The Editor in Chief thanks J. Vialard and another referee for their help in evaluating this paper.
    Description: Several numerical experiments are performed in a nonlinear, multi-level periodic channel model centered on the equator with different zonally uniform background flows which resemble the South Equatorial Current (SEC). Analy- sis of the simulations focuses on identifying stability criteria for a continuously stratified fluid near the equator. A 90 m deep frontal layer is required to destabilize a zonally uni- form, 10◦ wide, westward surface jet that is symmetric about the equator and has a maximum velocity of 100 cm/s. In this case, the phase velocity of the excited unstable waves is very similar to the phase speed of the Tropical Instability Waves (TIWs) observed in the eastern Pacific Ocean. The vertical scale of the baroclinic waves corresponds to the frontal layer depth and their phase speed increases as the vertical shear of the jet is doubled. When the westward surface parabolic jet is made asymmetric about the equator, in order to simu- late more realistically the structure of the SEC in the eastern Pacific, two kinds of instability are generated. The oscilla- tions that grow north of the equator have a baroclinic nature, while those generated on and very close to the equator have a barotropic nature. This study shows that the potential for baroclinic instabil- ity in the equatorial region can be as large as at mid-latitudes, if the tendency of isotherms to have a smaller slope for a given zonal velocity, when the Coriolis parameter vanishes, is compensated for by the wind effect.
    Description: Published
    Description: 729-740
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: open
    Keywords: equatorial oceanography ; numerical modeling ; fronts and jets ; 03. Hydrosphere::03.01. General::03.01.01. Analytical and numerical modeling
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...