GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-12-15
    Description: Here, we report on the Quaternary Volsci Volcanic Field (VVF, central Italy). In light of new 40Ar/39Ar geochronological data and compositional characterization of juvenile eruptive products, we refine the history of VVF activity, and outline the implications on the pre-eruptive magma system and the continental subduction processes involved. Different from the nearby volcanic districts of the Roman and Campanian Provinces, the VVF was characterized by small-volume (0.01–0.1 km3) eruptions from a network of monogenetic centers (mostly tuff rings and scoria cones, with subordinate lava occurrences), clustered along high-angle faults of lithospheric depth. Leucite-bearing, high-K (HKS) magmas (for which we report for the first time the phlogopite phenocryst compositions) mostly fed the early phase of activity (∼761–539 ka), then primitive, plagioclase-bearing (KS) magmas appeared during the climactic phase (∼424–349 ka), partially overlapping with HKS ones, and then prevailed during the late phase of activity (∼300–231 ka). The fast ascent of primitive magma batches is typical of a tectonically controlled volcanic field, where the very low magma flux is a passive byproduct of regional tectonic strain. We suggest that the dominant compressive stress field acting at depth was accompanied by an extensional regime in the upper crust, associated with the gravity spreading of the Apennine chain, allowing the fast ascent of magma from the mantle source with limited stationing in shallow reservoirs.
    Description: Published
    Description: 689–718
    Description: 1V. Storia eruttiva
    Description: JCR Journal
    Keywords: Quaternary volcanism ; 40Ar/39Ar geochronology ; Tyrrhenian Sea margin ; Central Italy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-20
    Description: Ongoing studies conducted in northern polar regions reveal that permafrost stability plays a key role in the modern carbon cycle as it potentially stores considerable quantities of greenhouse gases. Rapid and recent warming of the Arctic permafrost is resulting in significant greenhouse gas emissions, both from physical and microbial processes. The potential impact of greenhouse gas release from the Antarctic region has not, to date, been investigated. In Antarctica, the McMurdo Dry Valleys comprise 10 % of the ice-free soil surface areas in Antarctica and like the northern polar regions are also warming albeit at a slower rate. The work presented herein examines a comprehensive sample suite of soil gas (e.g., CO2, CH4 and He) concentrations and CO2 flux measurements conducted in Taylor Valley during austral summer 2019/2020. Analytical results reveal the presence of significant concentrations of CO2, CH4 and He (up to 3.44 vol%, 18,447 ppmv and 6.49 ppmv, respectively) at the base of the active layer. When compared with the few previously obtained measurements, we observe increased CO2 flux rates (estimated CO2 emissions in the study area of 21.6 km2 ≈ 15 tons day-1). We suggest that the gas source is connected with the deep brines migrating from inland (potentially from beneath the Antarctic Ice Sheet) towards the coast beneath the permafrost layer. These data provide a baseline for future investigations aimed at monitoring the changing rate of greenhouse gas emissions from Antarctic permafrost, and the potential origin of gases, as the southern polar region warms.
    Description: Published
    Description: 161345
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: Antarctica; ; CO(2) output; ; McMurdo Dry Valleys; ; Permafrost; ; Soil gas survey ; 02.01. Permafrost
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...