GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-12-18
    Description: The Arctic region plays a central role in the global climate system. Modifications in the Arctic radiative budget may strongly influence large scale atmospheric and oceanic circulation. The evaluation of the surface energy balance sensitivity to variations in several parameters, such as surface temperature, water vapour content, surface albedo, and atmospheric aerosols, is one of the main issues in assessing how the Arctic will respond to future climate changes. The NDACC station at Thule Air Base (76.5°N, 68.8°W) is equipped with a variety of instruments for the measurement of the radiative fluxes at the surface, aerosol optical properties, water vapour atmospheric content, and meteorological parameters. A Yankee Environmental System Total Solar Pyranometer (YES-TSP) and an Eppley pyrgeometer (PIR) are installed at Thule for the measurement of the global shortwave and longwave downward irradiances at the surface. The TSP was installed in 2002, while the PIR in 2009. A Cimel Sunphotometer measures aerosol optical properties and water vapour columnar content; the Cimel is part of the Aerosol Robotic Network and was installed in 2007. In winter, the water vapour columnar content is also measured at Thule with a millimeter-wave spectrometer (GBMS) operating in the 230-280 GHz range. GBMS measurements have been carried out during several winters between 2002 and 2011. A meteorological station, which measures surface temperature and pressure, relative humidity, wind speed and direction is also continuously operational at Thule. Satellite observations of the surface shortwave albedo obtained from MODIS have been used together with ground-based measurements. Four years (2007 to 2010) of surface shortwave irradiance at the surface, aerosol optical properties, and water vapour have been combined with satellite observations of the surface albedo. Radiative transfer model calculations are used to reproduce the observed shortwave fluxes and to separate the effects of the different parameters in modulating the cloud-free downward shortwave radiation at the ground. Water vapour is the main factor affecting the cloud-free shortwave irradiance at the surface. Its column value varies between 0.1 and 1.4 cm during the period spring to early autumn. Water vapour produces a reduction of the surface shortwave flux by -(212%). The surface albedo varies between 0.05 and 0.66 in the period March to September, with values larger than 0.5 in spring and smaller than 0.1 in summer. In spring the surface albedo induces an increase by +(2-4.5%) in the downward shortwave radiation. The aerosol optical depth at 500 nm is generally lower than 0.2; atmospheric aerosols produce a reduction in the shortwave radiation down to -5%. On annual base, the mean effects of water vapour and surface albedo are estimated to be –(10-11) Wm-2 and +(2-3) Wm-2, respectively. The temperature and humidity profiles in the troposphere have the strongest influence on the cloud-free downwelling longwave irradiance. In wintertime, in absence of solar radiation, the longwave fluxes dominate the surface radiation budget. GBMS water vapour measurements from winters 2009 to 2011 have been used, together with surface humidity and temperature, to investigate the relative influence of these factors in affecting the downwelling longwave irradiance.
    Description: Unpublished
    Description: Réunion Island, Francia
    Description: 1.8. Osservazioni di geofisica ambientale
    Description: 1.10. TTC - Telerilevamento
    Description: open
    Keywords: shortwave infrared ; longwave infrared ; radiation budget ; aerosols ; water vapour ; Greenland ; Arctic ; 01. Atmosphere::01.01. Atmosphere::01.01.05. Radiation
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-12-18
    Description: Several instruments are operational at Thule Air Base (76.5oN, 68.8oW) as part of the Network for Detection of Atmospheric Composition Change. A lidar was installed in 1990 and has been operational particularly during the winter season. Lidar measurements are used to derive the aerosol backscatter ratio between about 10 and 35 km, and the atmospheric temperature (T) profile from 25 up to 70 km, with a resolution of 150 m. A ground-based millimeter-wave spectrometer (GBMS) was installed at Thule in 2001, and has been operational during the winter seasons of 2001-2003 and 2009-2011. The GBMS permits to derive the atmospheric concentration profiles of different chemical species, such as O3, CO, N2O, and HNO3, between about 15 and 80 km at a resolution of 6-8 km. The Arctic winter stratosphere is characterized by a high variability, and detection of trends is particularly difficult. The evolution of the vortex and the temperatures in the lower stratosphere has a large impact on formation of Polar Stratospheric Clouds (PSC) and on the stratosphere chemical evolution. Coldest winters occurred in 1999-2000, and 2004-2005. Intensive measurement campaigns were conducted at Thule Air Base during winters 2008-2009 and 2010-2011. These two winters have been deeply different in their thermal, dynamical and chemical evolution. The 2008-2009 Arctic winter has been characterized by the most intense Sudden Stratospheric Warming (SSW) event ever observed, and the maximum of this warming was detected over Greenland. Thus, ground-based observations of the thermal structure and chemical composition of the middle atmosphere from the station at Thule Air Base have permitted to show the evolution of the phenomenon and its interactions with the dynamical structure of the polar vortex in the region of maximum warming. On the contrary, the 2010-2011 has been a very cold winter, and polar stratospheric clouds have been detected by lidar from mid-February to mid-March at Thule Air Base. This very cold winter, together with the massive formation of PSCs, has caused the record stratospheric ozone loss that is occurring in spring 2011 in the Arctic. In this study, we will present a summary of the measurements of the thermal and chemical stratospheric structure obtained at Thule Air Base between 1990 and 2011, with special attention to the two winters of 2008-2009 and 2010-2011.
    Description: Unpublished
    Description: Sheraton Denver Downtown Hotel, Denver, CO, USA
    Description: 1.8. Osservazioni di geofisica ambientale
    Description: 1.10. TTC - Telerilevamento
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: open
    Keywords: stratospheric composition ; ozone ; nitric acid ; sudden stratospheric warming ; Greenland ; Arctic ozone loss ; lidar observations ; microwave remote sensing ; 01. Atmosphere::01.01. Atmosphere::01.01.99. General or miscellaneous ; 01. Atmosphere::01.01. Atmosphere::01.01.01. Composition and Structure
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Abstract
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-12-18
    Description: High resolution temperature profiles (HRTP) have been derived from measurements performed by Global Ozone Monitoring by Occultation of Stars (GOMOS) onboard ENVISAT. HRTP are derived from measurements with two fast photometers whose signal is sampled at 1 kHz, and allows investigating the role of irregularities in the density and temperature profiles, such as those associated with gravity waves. In this study high resolution temperature and density profiles measured at high latitude by GOMOS are compared with observations made with the ground-based aerosol/temperature LIDAR at Thule, Greenland. The LIDAR at Thule contributes to the Network for the Detection of Atmospheric Composition Change. The LIDAR profiles are analyzed in the height interval overlapping with GOMOS data (22-35 km), and the density and temperature profiles are obtained with 250 m vertical resolution. The comparison is focused on data collected during the 2008-2009 and 2009-2010 Arctic winters. Profiles measured within 6 hours and 500 km are selected. The profiles are classified based on spatial and temporal variability of dynamical indicators over Thule and at the GOMOS tangent height position. Several corresponding features can be identified in the GOMOS and LIDAR profiles, suggesting that the GOMOS HRTP could be used to investigate the global distribution of small scale fluctuations. As an example, two cases corresponding to inner and outer vortex conditions during the 2008-2009 winter are discussed, also in relation with the very intense sudden stratospheric warming occurred in this season.
    Description: Published
    Description: New Zealand
    Description: 5A. Ricerche polari e paleoclima
    Keywords: stratosphere ; temperature ; GOMOS ; 01.01. Atmosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-12-16
    Description: This study examines the relationships linking methanesulfonic acid (MSA, arising from the atmospheric oxidation of the biogenic dimethylsulfide, DMS) in atmospheric aerosol, satellite-derived chlorophyll a (Chl-a), and oceanic primary production (PP), also as a function of sea ice melting (SIM) and extension of the ice free area in the marginal ice zone (IF-MIZ) in the Arctic. MSA was determined in PM10 samples collected over the period 2010–2012 at two Arctic sites, Ny Ålesund (78.9°N, 11.9°E), Svalbard islands, and Thule Air Base (76.5°N, 68.8°W), Greenland. PP is calculated by means of a bio-optical, physiologically based, semi-analytical model in the potential source areas located in the surrounding oceanic regions (Barents and Greenland Seas for Ny Ålesund, and Baffin Bay for Thule). Chl-a peaks in May in the Barents sea and in the Baffin Bay, and has maxima in June in the Greenland sea; PP follows the same seasonal pattern of Chl-a, although the differences in absolute values of PP in the three seas during the blooms are less marked than for Chl-a. MSA shows a better correlation with PP than with Chl-a, besides, the source intensity (expressed by PP) is able to explain more than 30% of the MSA variability at the two sites; the other factors explaining the MSA variability are taxonomic differences in the phytoplanktonic assemblages, and transport processes from the DMS source areas to the sampling sites. The taxonomic differences are also evident from the slopes of the correlation plots between MSA and PP: similar slopes (in the range 34.2–36.2 ng m−3of MSA/(gC m−2 d−1)) are found for the correlation between MSA at Ny Ålesund and PP in Barents Sea, and between MSA at Thule and PP in the Baffin Bay; conversely, the slope of the correlation between MSA at Ny Ålesund and PP in the Greenland Sea in summer is smaller (16.7 ng m−3of MSA/(gC m−2 d−1)). This is due to the fact that DMS emission from the Barents Sea and Baffin Bay is mainly related to the MIZ diatoms, which are prolific DMS producers, whereas in the Greenland Sea the DMS peak is related to an offshore pelagic bloom where low-DMS producer species are present. The sea ice dynamic plays a key role in determining MSA concentration in the Arctic, and a good correlation between MSA and SIM (slope = 39 ng m−3 of MSA/106 km2 SIM) and between MSA and IF-MIZ (slope = 56 ng m−3 of MSA/106 km2 IF-MIZ) is found for the cases attributable to bloomings of diatoms in the MIZ. Such relationships are calculated by combining the data sets from the two sites and suggest that PP is related to sea ice melting and to the extension of marginal sea ice areas, and that these factors are the main drivers for MSA concentrations at the considered Arctic sites.
    Description: PRIN 2007 2007L8Y4NB (‘‘Dirigibile Italia’’), PRIN 2009 20092C7KRC (“Arctica”), Italian Antarctic Programme (PNRA) Projects 2009/A3.04 and 2013/C3.03, Progetto Premiale ARCA.
    Description: Published
    Description: 1-15
    Description: 5A. Ricerche polari e paleoclima
    Description: JCR Journal
    Keywords: biogenic aerosol ; Arctic ; sea ice ; 01.01. Atmosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...