GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate  (3)
Document type
Keywords
Years
  • 1
    Publication Date: 2017-04-04
    Description: In this work we present and discuss the results obtained from a set of present and future climate simulations performed with a high-resolution model able to represent the dynamics of the Mediterranean Sea. The ability of the model to reproduce the basic features of the observed climate in the Mediterranean region and the beneficial effects of both atmospheric improved resolution and interactive Mediterranean Sea are assessed. In particular, the major characteristics of the variability in the Mediterranean basin and its connection with the large-scale circulation are investigated. Furthermore, the mechanisms through which global warming might affect the regional features of the climate are explored, focusing especially on the characteristics of the hydrological cycle. The model used is the CMCC-MED model, developed under the framework of the EU CIRCE Project (Climate Change and Impact Research: the Mediterranean Environment), which provides, for the first time, the possibility to accurately assess the role and feedbacks of the Mediterranean Sea in the global climate system. CMCC-MED, in fact, is a global coupled ocean-atmosphere general circulation model (AOGCM) coupled with a high-resolution model of the Mediterranean Sea. The atmospheric model component (ECHAM-5) has a horizontal resolution of about 80 Km, the global ocean model (OPA8.2) has horizontal resolution of about 2◦ with an equatorial refinement (0.5◦) and the Mediterranean Sea model (NEMO in the MFS implementation) has horizontal resolution of 1/16◦ (∼7 Km) and 72 vertical levels. The communication between the atmospheric model and the ocean models is performed through the OASIS3 coupler, and the exchange of SST, surface momentum, heat, and water fluxes occurs approximately every 2 hours. The global ocean-Mediterranean connection occurs through the exchange of dynamical and tracer fields via simple input/output operations. In particular, horizontal velocities, tracers and sea-level are transferred from the global ocean to the Mediterranean model through the open boundaries in the Atlantic box. Similarly, vertical profiles of temperature, salinity and horizontal velocities at Gibraltar Strait are transferred from the regional Mediterranean model to the global ocean. The ocean-to-ocean exchange occurs with a daily frequency, with the exchanged variables being averaged over the daily time-window.
    Description: Unpublished
    Description: Zurich
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: open
    Keywords: mediterranean region region ; climate change ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: In this work we present and discuss the results obtained from a set of present and future climate simulations performed with a high-resolution model able to represent the dynamics of the Mediterranean Sea. The ability of the model to reproduce the basic features of the observed climate in the Mediterranean region and the beneficial effects of both atmospheric improved resolution and interactive Mediterranean Sea are assessed. In particular, the major characteristics of the variability in the Mediterranean basin and its connection with the large-scale circulation are investigated. Furthermore, the mechanisms through which global warming might affect the regional features of the climate are explored, focusing especially on the characteristics of the hydrological cycle.
    Description: Unpublished
    Description: Wien
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: open
    Keywords: euro-mediterranean region ; climate variability ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: In this study the interplay between Tropical Cyclones (TCs) and the Northern hemispheric Ocean Heat Transport (OHT) is investigated. In particular, results from a numerical simulation of the 20th and 21st Century climate, following the Intergovernmental Panel for Climate Change (IPCC) 20C3M and A1B scenario protocols respectively have been analyzed. The numerical simulations have been performed using a state-of-the-art global atmosphere-ocean-sea-ice coupled general circulation model - CGCM (CMCC-MED, Gualdi et al. 2010, Scoccimarro et al. 2010) with relatively high-resolution (T159) in the atmosphere. The model is an evolution of the INGV-SXG (Gualdi et al. 2008, Bellucci et al. 2008) and the ECHAM-OPA-LIM (Fogli et al. 2009, Vichi et al. 2010) The simulated TCs exhibit realistic structure, geographical distribution (Fig.2) and interannual variability, indicating that the model is able to capture the basic mechanisms linking the TC activity with the large scale circulation. The cooling of the surface ocean observed in correspondence of the TCs is well simulated by the model (Fig.3). TC activity is shown to significantly affect the poleward OHT out of the tropics, and the heat transport into the deep tropics (Fig.4). This effect, investigated by looking at the 100 most intense Northern Hemisphere TCs, is strongly correlated with the TC-induced momentum flux at the ocean surface (Fig.7). TCs frequency and intensity appear to be substantially stationary through the whole 1950-2069 simulated period as well as the effect of the TCs on the meridional OHT.
    Description: Unpublished
    Description: S.Francisco. USA
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: open
    Keywords: Tropical cyclones ; Ocean Heat Transoport ; climate models ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...