GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • -; After Bray & Curtis (1957); asynchrony; Biomass; Biomass, recovery; Biomass, resilience; Biomass, resistance; Biomass, standard deviation; Calculated; Calculated = mean/SD; Calculated after Loreau and de Mazancourt (2008); Coefficient of variation; co-occurrence history; disturbance; Duration, number of days; EXP; Experiment; Experimental plot; Factor analysis; Flood; Flooding index; grassland biodiversity; History; Jena_Experiment; Jena Experiment; JenExp; Log (x+1) transformed; Number of harvests; recovery; resistance; selection; Species richness; Species turnover; Sum; Synchrony index; Temporal Stability; The Jena Experiment; Thuringia, Germany  (1)
  • Aboveground, flux, carnivore to aboveground litter, dry mass; Aboveground, flux, decomposer to aboveground litter, dry mass; Aboveground, flux, decomposer to carnivore, dry mass; Aboveground, flux, decomposer to omnivore, dry mass; Aboveground, flux, herbivore to aboveground litter, dry mass; Aboveground, flux, herbivore to carnivore, dry mass; Aboveground, flux, herbivore to omnivore, dry mass; Aboveground, flux, litter to decomposer, dry mass; Aboveground, flux, litter to omnivore, dry mass; Aboveground, flux, omnivore to aboveground litter, dry mass; Aboveground, flux, plant to aboveground herbivore, dry mass; Aboveground, flux, plant to aboveground litter, dry mass; Aboveground, flux, plant to aboveground omnivore, dry mass; AE; Allometric equations; Belowground, flux, carnivore to soil organic matter, dry mass; Belowground, flux, decomposer to carnivore, dry mass; Belowground, flux, decomposer to omnivore, dry mass; Belowground, flux, decomposer to soil organic matter, dry mass; Belowground, flux, herbivore to carnivore, dry mass; Belowground, flux, herbivore to omnivore, dry mass; Belowground, flux, herbivore to soil organic matter, dry mass; Belowground, flux, omnivore to soil organic matter, dry mass; Belowground, flux, plant to belowground herbivore, dry mass; Belowground, flux, plant to belowground omnivore, dry mass; Belowground, flux, plant to soil organic matter, dry mass; Belowground, flux, soil microorganism to belowground omnivore, dry mass; Belowground, flux, soil microorganism to soil organic matter, dry mass; Belowground, flux, soil organic matter to belowground decomposer, dry mass; Belowground, flux, soil organic matter to belowground omnivore, dry mass; Belowground, flux, soil organic matter to soil microorganism, dry mass; Biodiversity; Biomass; Biomass, aboveground, carnivore, dry mass; Biomass, aboveground, decomposer, dry mass; Biomass, aboveground, herbivore, dry mass; Biomass, aboveground, omnivore, dry mass; Biomass, belowground, carnivore, dry mass; Biomass, belowground, decomposer, dry mass; Biomass, belowground, herbivore, dry mass; Biomass, belowground, omnivore, dry mass; Biomass, plant, dry mass; Biomass of aboveground litter, dry mass; Biomass of soil microorganism, dry mass; Biomass of soil organic matter, dry mass; Carbon uptake by plant; EM; Empirically measured; energay flow; Energy budget; energy storage; energy-use efficiency; EXP; Experiment; Flux, aboveground litter to soil organic matter, dry mass; grassland; Jena_Experiment; Jena Experiment; JenExp; Literature based; Mass-balancing; Modelled, Ecological Network Analysis; Modelled - ENA; Plot; Respiration, flux, aboveground, carnivore, dry mass; Respiration, flux, aboveground, decomposer, dry mass; Respiration, flux, aboveground, herbivore, dry mass; Respiration, flux, aboveground, omnivore, dry mass; Respiration, flux, belowground, carnivore, dry mass; Respiration, flux, belowground, decomposer, dry mass; Respiration, flux, belowground, herbivore, dry mass; Respiration, flux, belowground, omnivore, dry mass; Respiration, flux, plant, dry mass; Respiration, flux, soil microorganism, dry mass; The Jena Experiment; Thuringia, Germany; Total network, biomass, dry mass; Total network, community maintenance costs per day; Total network, energy flow, dry mass; Total network, energy flow uniformity  (1)
  • Block; Canopy height, maximum; Density; EXP; Experiment; Experiment week; Jena Experiment 2012; JenExp; JenExp_2012; Leaf area; Leaf area, specific, per mass dry weight; Leaf dry matter content, mass dry weight per mass wet weight; Length of roots, average; Plot; Root length, specific; Species; Species Pool; The Jena Experiment; Thuringia, Germany  (1)
Document type
Keywords
Publisher
Years
  • 1
    Publication Date: 2023-05-13
    Keywords: -; After Bray & Curtis (1957); asynchrony; Biomass; Biomass, recovery; Biomass, resilience; Biomass, resistance; Biomass, standard deviation; Calculated; Calculated = mean/SD; Calculated after Loreau and de Mazancourt (2008); Coefficient of variation; co-occurrence history; disturbance; Duration, number of days; EXP; Experiment; Experimental plot; Factor analysis; Flood; Flooding index; grassland biodiversity; History; Jena_Experiment; Jena Experiment; JenExp; Log (x+1) transformed; Number of harvests; recovery; resistance; selection; Species richness; Species turnover; Sum; Synchrony index; Temporal Stability; The Jena Experiment; Thuringia, Germany
    Type: Dataset
    Format: text/tab-separated-values, 8986 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Buzhdygan, Oksana Y; Meyer, Sebastian Tobias; Weisser, Wolfgang W; Eisenhauer, Nico; Ebeling, Anne; Borrett, Stuart R; Buchmann, Nina; Cortois, Roeland; De Deyn, Gerlinde B; de Kroon, Hans; Gleixner, Gerd; Hertzog, Lionel R; Hines, Jes; Lange, Markus; Mommer, Liesje; Ravenek, Janneke; Scherber, Christoph; Scherer-Lorenzen, Michael; Scheu, Stefan; Schmid, Bernhard; Steinauer, Katja; Strecker, Tanja; Tietjen, Britta; Vogel, Anja; Weigelt, Alexandra; Petermann, Jana S (2020): Biodiversity increases multitrophic energy use efficiency, flow and storage in grasslands. Nature Ecology & Evolution, https://doi.org/10.1038/s41559-020-1123-8
    Publication Date: 2023-11-09
    Description: This data set contains measures of energy-use efficiency, energy flow, and energy storage in units of dry biomass that quantify the multitrophic ecosystem functioning realized in grassland ecosystems of differing plant diversity. Given are both the measures integrated over whole ecosystems (total network measures) as well as the energy dynamics associated with individual ecosystem compartments including the entire biological community and detrital compartments across the above- and belowground parts of the ecosystem. Data presented here is from the Main Experiment plots of a large grassland biodiversity experiment (the Jena Experiment, see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Study plots are grouped in four blocks in parallel to the river in order to account for any effect of a gradient in abiotic soil properties. Each block contains an equal number of plots of each plant species richness and plant functional group richness level. Plots were maintained in general by bi-annual weeding and mowing. Since 2010, plot size was reduced to 5.5 x 6 m and plots were weeded three times per year. Trophic-network models were constructed for 80 of the experimental plots, and represent the ecosystem energy budget in the currency of dry-mass (g m-2 for standing stocks and g m-2 d-1 for flows). All trophic networks have the same topology, but they differ in the estimated size of the standing stock biomass of individual compartments (g m-2) and flows among the compartments (g m-2 d-1). Each trophic network contains twelve ecosystem compartments representing distinct trophic groups of the above- and belowground parts of the ecosystem (i.e., plants, soil microbial community, and above- and belowground herbivores, carnivores, omnivores, decomposers, all represented by invertebrate macro- and mesofauna) and detrital pools (i.e., surface litter and soil organic matter). Vertebrates were not considered in our study due to limitations of data availability and because the impact of resident vertebrates in our experimental system is expected to be minimal. Larger grazing vertebrates were excluded by a fence around the field site, though there was some occasional grazing by voles. Compartments are connected by 41 flows. Flows (fluxes) constitute 30 internal flows within the system, namely feeding (herbivory, predation, decomposition), excretion, mortality, and mechanical transformation of surface litter due to bioturbation plus eleven 11 external flows, i.e. one input (flows entering the system, namely carbon uptake by plants) and ten output flows (flows leaving the system, namely respiration losses). The ecosystem inflow (a flow entering the system) and outflows (flows leaving the system) represent carbon uptake and respiration losses, respectively. In the case of consumer groups, the food consumed (compartment-wide input flow) is further split into excretion (not assimilated organic material that is returned to detrital pools in the form of fecesfaeces) and assimilated organic material, which is further split into respiration (energy lost out of the system to the environment) and biomass production, which is further consumed by higher trophic levels due to predation or returned to detrital pools in the form of mortality (natural mortality or prey residues). In case of detrital pools (i.e. surface litter and soil organic matter), the input flows are in the form of excretion and mortality from the biota compartments, and output flows are in the form of feeding by decomposers and soil microorganisms (i.e. decomposition). Surface litter and soil organic matter are connected by flows in the form of burrowing (mechanical transportation) of organic material from the surface to the soil by soil fauna. Organism immigration and emigration are not considered in our study due to limited data availability. Flows were quantified using resource processing rates (i.e. the feeding rates at which material is taken from a source) multiplied with the standing biomass of the respective source compartment. To approximate resource processing rates, different approaches were used: (i) experimental measurements (namely the aboveground decomposition, fauna burial activity (bioturbation), microbial respiration, and aboveground herbivory and predation rates); (ii) allometric equations scaled by individual body mass, environmental temperature and phylogenetic group (for the above- and belowground fauna respiration rates and plant respiration); (iii) assimilation rates scaled by diet type (for quantification of belowground fauna excretion and natural mortality); (iv) literature-based rates scaled by biomass of trophic groups (for microbial mortality); and (v) mass-balance assumptions (carbon uptake, plant and aboveground fauna mortality, belowground decomposition, belowground herbivory, and belowground predation). Mass-balance assumption means that the flows are calculated assuming that resource inputs into the compartment (i.e. feeding) balance the rate at which material is lost (i.e. the sum of through excretion, respiration, predation, and natural death). We used constrained nonlinear multivariable optimization to perturb the initial flow rates estimated from the various sources. We assigned confidence ratings for each flow rate, reflecting the quality of empirical data it is based on. We then used the 'fmincon' function from Matlab's optimization toolbox, which utilizes the standard Moore-Penrose pseudoinverse approach to achieve a balanced steady state ecological network model that best reflects the collected field data. Measured data used to parameterize the trophic network models were collected mostly in the year 2010. Network-wide measures that quantify proxies for different aspects of multitrophic ecosystem functioning were calculated for each experimental plot using the 'enaR' package in R. In particular, total energy flow was measured as the sum of all flows through each ecosystem compartment. Flow uniformity was calculated as the ratio of the mean of summed flows through each individual ecosystem compartment divided by the standard deviation of these means. Total-network standing biomass was determined as the sum of standing biomass across all ecosystem compartments. Community maintenance costs were calculated as the ratio of community-wide respiration related to community-wide biomass.
    Keywords: Aboveground, flux, carnivore to aboveground litter, dry mass; Aboveground, flux, decomposer to aboveground litter, dry mass; Aboveground, flux, decomposer to carnivore, dry mass; Aboveground, flux, decomposer to omnivore, dry mass; Aboveground, flux, herbivore to aboveground litter, dry mass; Aboveground, flux, herbivore to carnivore, dry mass; Aboveground, flux, herbivore to omnivore, dry mass; Aboveground, flux, litter to decomposer, dry mass; Aboveground, flux, litter to omnivore, dry mass; Aboveground, flux, omnivore to aboveground litter, dry mass; Aboveground, flux, plant to aboveground herbivore, dry mass; Aboveground, flux, plant to aboveground litter, dry mass; Aboveground, flux, plant to aboveground omnivore, dry mass; AE; Allometric equations; Belowground, flux, carnivore to soil organic matter, dry mass; Belowground, flux, decomposer to carnivore, dry mass; Belowground, flux, decomposer to omnivore, dry mass; Belowground, flux, decomposer to soil organic matter, dry mass; Belowground, flux, herbivore to carnivore, dry mass; Belowground, flux, herbivore to omnivore, dry mass; Belowground, flux, herbivore to soil organic matter, dry mass; Belowground, flux, omnivore to soil organic matter, dry mass; Belowground, flux, plant to belowground herbivore, dry mass; Belowground, flux, plant to belowground omnivore, dry mass; Belowground, flux, plant to soil organic matter, dry mass; Belowground, flux, soil microorganism to belowground omnivore, dry mass; Belowground, flux, soil microorganism to soil organic matter, dry mass; Belowground, flux, soil organic matter to belowground decomposer, dry mass; Belowground, flux, soil organic matter to belowground omnivore, dry mass; Belowground, flux, soil organic matter to soil microorganism, dry mass; Biodiversity; Biomass; Biomass, aboveground, carnivore, dry mass; Biomass, aboveground, decomposer, dry mass; Biomass, aboveground, herbivore, dry mass; Biomass, aboveground, omnivore, dry mass; Biomass, belowground, carnivore, dry mass; Biomass, belowground, decomposer, dry mass; Biomass, belowground, herbivore, dry mass; Biomass, belowground, omnivore, dry mass; Biomass, plant, dry mass; Biomass of aboveground litter, dry mass; Biomass of soil microorganism, dry mass; Biomass of soil organic matter, dry mass; Carbon uptake by plant; EM; Empirically measured; energay flow; Energy budget; energy storage; energy-use efficiency; EXP; Experiment; Flux, aboveground litter to soil organic matter, dry mass; grassland; Jena_Experiment; Jena Experiment; JenExp; Literature based; Mass-balancing; Modelled, Ecological Network Analysis; Modelled - ENA; Plot; Respiration, flux, aboveground, carnivore, dry mass; Respiration, flux, aboveground, decomposer, dry mass; Respiration, flux, aboveground, herbivore, dry mass; Respiration, flux, aboveground, omnivore, dry mass; Respiration, flux, belowground, carnivore, dry mass; Respiration, flux, belowground, decomposer, dry mass; Respiration, flux, belowground, herbivore, dry mass; Respiration, flux, belowground, omnivore, dry mass; Respiration, flux, plant, dry mass; Respiration, flux, soil microorganism, dry mass; The Jena Experiment; Thuringia, Germany; Total network, biomass, dry mass; Total network, community maintenance costs per day; Total network, energy flow, dry mass; Total network, energy flow uniformity
    Type: Dataset
    Format: text/tab-separated-values, 4640 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-06-13
    Description: This data set contains plant species traits: Flowering initiation, Flowering cessation, specific leaf area (SLA), leaf dry matter content (LDMC), leaf area, maximum canopy height, specific root length (SRL), mean rooting depth (MRD), root mass density (RMD) and root length density (RLD). The traits were measured during the summer of 2012 on the plants grown in monoculture within a grassland trait diversity experiment (the Jena Trait Based Experiment). The experiment consists of 20 plant species that were assigned to one of three species pools: 1. Species that vary along a gradient of spatial leaf and root trait similarity, 2. Species that vary along a gradient of phenological trait similarity and 3. Species that vary along a gradient of both spatial and phenological similarity (see Ebeling et al. 2014). The plots were 3 x 3 m in size and established within the Jena Experiment, Germany, in 2011. Plots were maintained by manual weeding in March, July and September. Traits were measured during the summer of 2012. Flowering initiation and cessation were measured respectively as the week in which flowering was first observed and flowering senesce had completed throughout the plot. Leaf area, leaf fresh mass were measured on approximately five fully expanded leaves from different individuals. These leaves were dried at 65 C for over 48 hours and massed to calculate the specific leaf area (SLA, area per dry mass), and the leaf dry matter content (LDMC, dry mass per fresh mass). Maximum canopy height was measured during peak biomass in May by taking the average of five measurements along a transect. Root traits were measured by taking soil cores, 4 cm in diameter and 40 cm deep and sectioned by depth: 0-5, 5-10, 10-20, 20-30 and 30-40 cm. Roots were washed and roots 〈 2 mm in diameter were stored in 70 % ethanol. Root length was determined by scanning stained roots with neutral red and scanning roots using WinRhizo software. Root traits were only measured in species pool 1 and 2. Roots were then dried at 65 C for over 48 hours and massed to determine the specific root length (SRL, root length per mass), mean rooting depth (MRD, the average depth weighed by root mass per depth), root mass density (RMD, the average root mass per cubic cm volume) and root length density (RLD, root mass per root length).
    Keywords: Block; Canopy height, maximum; Density; EXP; Experiment; Experiment week; Jena Experiment 2012; JenExp; JenExp_2012; Leaf area; Leaf area, specific, per mass dry weight; Leaf dry matter content, mass dry weight per mass wet weight; Length of roots, average; Plot; Root length, specific; Species; Species Pool; The Jena Experiment; Thuringia, Germany
    Type: Dataset
    Format: text/tab-separated-values, 335 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...