GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Engineering  (3)
  • ZO 4200  (3)
Material
Publisher
Language
Years
Subjects(RVK)
  • Engineering  (3)
RVK
  • ZO 4200  (3)
  • 1
    Online Resource
    Online Resource
    SAGE Publications ; 2022
    In:  Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering Vol. 236, No. 10-11 ( 2022-09), p. 2306-2317
    In: Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, SAGE Publications, Vol. 236, No. 10-11 ( 2022-09), p. 2306-2317
    Abstract: Oscillation suppression is essential for the stability design of electric power steering (EPS) systems. The stability controller module in EPS controller is the key to solve the stability control problem of EPS system. This paper proposes a new method of stability analysis and stability controller module design for EPS systems. Furthermore, the dynamic characteristics of the EPS system are analyzed, and two critical factors on the resulting EPS stability, that is, large assist and variable assist gain are investigated experimentally. The transfer function from steering torque to sensor torque is redefined. A new transfer function is proposed for measuring the effect of variable assist gain on system performance. Based on the above factors and transfer functions, constraints on the stability controller design are proposed. Then the optimal parameters in the controller are obtained by maximizing an objective function including phase margin, gain margin, and crossover frequency. It is concluded from simulations and bench tests that the proposed stability controller can significantly reduce the torque oscillation of the EPS system.
    Type of Medium: Online Resource
    ISSN: 0954-4070 , 2041-2991
    RVK:
    Language: English
    Publisher: SAGE Publications
    Publication Date: 2022
    detail.hit.zdb_id: 2032754-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    SAGE Publications ; 2020
    In:  Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering Vol. 234, No. 1 ( 2020-01), p. 56-70
    In: Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, SAGE Publications, Vol. 234, No. 1 ( 2020-01), p. 56-70
    Abstract: A hybrid proportional electromagnetic dynamic vibration absorber consisting of an electromagnetic actuator and an elastic element is proposed for control of engine vibration during idling. The design of the proportional electromagnetic actuator is realized considering the geometric parameters of the core to achieve nearly constant magnetic force over a broad range of its dynamic displacement but proportional to square of the current. The dynamic characteristics of the electromagnetic dynamic vibration absorber are analyzed analytically and experimentally. The effects of various geometric parameters of the actuator such as the slopes and width/height, and the air gaps on the resulting magnetic force characteristics are evaluated using a finite element model and verified experimentally. A methodology is proposed to achieve magnetic force proportional to current and consistent with the disturbance frequency. The hybrid proportional electromagnetic dynamic vibration absorber is subsequently applied to a single-degree-of-freedom primary system with an acceleration feedback control algorithm for attenuation of primary system vibration in a frequency band around the typical idling vibration frequencies. The effectiveness of the hybrid proportional electromagnetic dynamic vibration absorber is evaluated through simulations and laboratory experiments under harmonic excitations in the 20–30 Hz frequency range. Both the simulation and measurements show that the hybrid proportional electromagnetic dynamic vibration absorber can yield effective attenuation of periodic idling vibration in the frequency range considered.
    Type of Medium: Online Resource
    ISSN: 0954-4070 , 2041-2991
    RVK:
    Language: English
    Publisher: SAGE Publications
    Publication Date: 2020
    detail.hit.zdb_id: 2032754-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    SAGE Publications ; 2022
    In:  Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering Vol. 236, No. 2-3 ( 2022-02), p. 322-333
    In: Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, SAGE Publications, Vol. 236, No. 2-3 ( 2022-02), p. 322-333
    Abstract: Realisation of high-precision trajectory tracking is the key technology to achieve unmanned driving, which has an important impact on vehicle handling stability, safety and comfort. However, many confounding factors seriously restrict tracking performance and pose a great challenge to the design of the controller for tracking the desired trajectory. A comprehensive method that combines feedforward and backstepping sliding mode control is proposed for a four-wheel independent driving–four-wheel independent steering (4WID-4WIS) vehicle, which has the advantages of over-coupling, multiple degrees of freedom and flexible operation. The desired value is the target for the feedforward output of the controller, and the backstepping sliding mode control is used to overcome all kinds of disturbances. A mature and reliable Luenberger observer is designed to achieve good trajectory tracking performance for reducing some sensors. The proposed method is verified via MATLAB/Simulink simulation, which proved that the method has an excellent trajectory tracking performance.
    Type of Medium: Online Resource
    ISSN: 0954-4070 , 2041-2991
    RVK:
    Language: English
    Publisher: SAGE Publications
    Publication Date: 2022
    detail.hit.zdb_id: 2032754-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...