GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Engineering  (2)
  • ZI 6705  (2)
Material
Publisher
Language
Years
Subjects(RVK)
  • Engineering  (2)
RVK
  • ZI 6705  (2)
  • 1
    In: Water Supply, IWA Publishing, Vol. 22, No. 5 ( 2022-05-01), p. 5480-5493
    Abstract: Accurately predicting dissolved oxygen is of great significance to the intelligent management and control of river water quality. However, due to the interference of external factors and the irregularity of its changes, this is still a ticklish problem, especially in multi-step forecasting. This article mainly studies two issues: we first analyze the lack of water quality data and propose to use the random forest algorithm to interpolate the missing data. Then, we systematically discuss and compare water quality prediction methods based on attention-based RNN, and develop attention-based RNN into a multi-step prediction for dissolved oxygen. Finally, we applied the model to the canal in Jiangnan (China) and compared eight baseline methods. In the dissolved oxygen single-step prediction, the attention-based GRU model has better performance. Its measure indicators MAE, RMSE, and R2 are 0.051, 0.225, and 0.958, which are better than baseline methods. Next, attention-based GRU was developed into multi-step prediction, which can predict the dissolved oxygen in the next 20 hours with high prediction accuracy. The MAE, RMSE, and R2 are 0.253, 0.306, and 0.918. Experimental results show that attention-based GRU can achieve more accurate dissolved oxygen prediction in single-neural network and multi-step predictions.
    Type of Medium: Online Resource
    ISSN: 1606-9749 , 1607-0798
    RVK:
    Language: English
    Publisher: IWA Publishing
    Publication Date: 2022
    detail.hit.zdb_id: 2049736-2
    detail.hit.zdb_id: 2967640-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    IWA Publishing ; 2023
    In:  Water Supply Vol. 23, No. 7 ( 2023-07-01), p. 2940-2957
    In: Water Supply, IWA Publishing, Vol. 23, No. 7 ( 2023-07-01), p. 2940-2957
    Abstract: High-precision water quality prediction plays a vital role in preventing and controlling river pollution. However, river water's highly nonlinear and complex spatio-temporal dependencies pose significant challenges to water quality prediction tasks. In order to capture the spatial and temporal characteristics of water quality data simultaneously, this paper combines deep learning algorithms for river water quality prediction in the river network area of Jiangnan Plain, China. A water quality prediction method based on graph convolutional network (GCN) and long short-term memory neural network (LSTM), namely spatio-temporal graph convolutional network model (ST-GCN), is proposed. Specifically, the spatio-temporal graph is constructed based on the spatio-temporal correlation between river stations, the spatial features in the river network are extracted using GCN, and the temporal correlation of water quality data is obtained by integrating LSTM. The model was evaluated using R2, MAE, and RMSE, and the experimental results were 0.977, 0.238, and 0.291, respectively. Compared with traditional water quality prediction models, the ST-GCN model has significantly improved prediction accuracy, better stability, and generalization ability.
    Type of Medium: Online Resource
    ISSN: 1606-9749 , 1607-0798
    RVK:
    Language: English
    Publisher: IWA Publishing
    Publication Date: 2023
    detail.hit.zdb_id: 2049736-2
    detail.hit.zdb_id: 2967640-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...