GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of General Virology, Microbiology Society, Vol. 89, No. 4 ( 2008-04-01), p. 968-974
    Abstract: Highly pathogenic avian influenza virus (HPAIV) H5N1 of Asian origin continues to circulate in poultry and wild birds, causing considerable concern for veterinary and public health in Asia, Europe and Africa. Natural transmission of HPAIV H5N1 from poultry to humans, resulting in infections associated with high mortality, and from poultry or wild birds to large felids and domestic cats has been reported. Experimental infection of cats with HPAIV H5N1 derived from a human patient resulted in lethal disease. The role of cats in the adaptation of HPAIV H5N1 to mammals and vaccination regimens for the eventual protection of cats, however, remain to be elucidated. Here, it was shown that cats can be protected against a lethal high-dose challenge infection by an inactivated, adjuvanted heterologous H5N6 avian influenza virus vaccine. The challenge HPAIV H5N1 was derived from a naturally infected cat. In non-vaccinated cats, low-dose exposure resulted in asymptomatic infections with minimal virus excretion. As diseased cats can transmit the infection to naïve contact animals, the epidemiological role of H5N1-infected cats in endemically infected areas as a link between wild birds, poultry and humans needs close inspection, and vaccination of cats should be considered to reduce possible human exposure.
    Type of Medium: Online Resource
    ISSN: 0022-1317 , 1465-2099
    RVK:
    RVK:
    Language: English
    Publisher: Microbiology Society
    Publication Date: 2008
    detail.hit.zdb_id: 2007065-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of General Virology, Microbiology Society, Vol. 80, No. 10 ( 1999-10-01), p. 2639-2646
    Abstract: The envelope is of cardinal importance for the entry of feline immunodeficiency virus (FIV) into its host cells, which consist of cells of the immune system including macrophages. To characterize the envelope glycoprotein determinants involved in macrophage tropism, chimeric infectious molecular clones were constructed containing envelope gene sequences from isolates that had been propagated in peripheral blood mononuclear cells (PBMC). The progeny virus was examined for growth in PBMC and bone marrow-derived macrophages and viruses with different replication kinetics in macrophages were selected. Envelope-chimeric viruses revealed that nucleotide sequences encoding variable regions 3 and 4 of the surface glycoprotein, SU, are involved in macrophage tropism of FIV. To assess the biological importance of this finding, the phenotypes of envelope proteins of viruses derived from bone marrow, brain, lymph node and PBMC of an experimentally FIV-infected, healthy cat were examined. Since selection during propagation had to be avoided, provirus envelope gene sequences were amplified directly and cloned into an infectious molecular clone of FIV strain Petaluma. The viruses obtained were examined for their replication properties. Of 15 clones tested, 13 clones replicated both in PBMC and macrophages, two (brain-derived clones) replicated in PBMC only and none replicated in Crandell feline kidney cells or astrocytes. These results indicate that dual tropism for PBMC and macrophages is a common feature of FIV variants present in vivo .
    Type of Medium: Online Resource
    ISSN: 0022-1317 , 1465-2099
    RVK:
    RVK:
    Language: English
    Publisher: Microbiology Society
    Publication Date: 1999
    detail.hit.zdb_id: 2007065-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Microbiology Society ; 2019
    In:  Journal of General Virology Vol. 100, No. 12 ( 2019-12-01), p. 1595-1604
    In: Journal of General Virology, Microbiology Society, Vol. 100, No. 12 ( 2019-12-01), p. 1595-1604
    Abstract: Species A rotaviruses (RVAs) are a major cause of gastroenteritis in animals and humans. Their genome consists of 11 segments of dsRNA, and reassortment events between animal and human strains can contribute to the high genetic diversity of RVAs. We used a plasmid-based reverse genetics system to investigate the reassortment potential of the genome segment encoding the viral outer capsid protein VP4, which is a major antigenic determinant, mediates viral entry and plays an important role in host cell tropism. We rescued reassortant viruses containing VP4 from porcine, bovine, bat, pheasant or chicken RVA strains in the backbone of simian strain SA11. The VP4 reassortants could be stably passaged in MA-104 cells and induced cytopathic effects. However, analysis of growth kinetics revealed marked differences in replication efficiency. Our results show that the VP4-encoding genome segment has a high reassortment potential, even between virus strains from highly divergent species. This can result in replication-competent reassortants with new genomic, growth and antigenic features.
    Type of Medium: Online Resource
    ISSN: 0022-1317 , 1465-2099
    RVK:
    RVK:
    Language: English
    Publisher: Microbiology Society
    Publication Date: 2019
    detail.hit.zdb_id: 2007065-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Microbiology Society ; 2015
    In:  Journal of General Virology Vol. 96, No. 1 ( 2015-01-01), p. 106-114
    In: Journal of General Virology, Microbiology Society, Vol. 96, No. 1 ( 2015-01-01), p. 106-114
    Type of Medium: Online Resource
    ISSN: 0022-1317 , 1465-2099
    RVK:
    RVK:
    Language: English
    Publisher: Microbiology Society
    Publication Date: 2015
    detail.hit.zdb_id: 2007065-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...