GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Chemistry/Pharmacy  (13)
  • VN 5020  (13)
Material
Publisher
Language
Years
Subjects(RVK)
  • Chemistry/Pharmacy  (13)
RVK
  • 1
    In: Angewandte Chemie, Wiley, Vol. 134, No. 30 ( 2022-07-25)
    Abstract: Sn‐based perovskites are the most promising alternative materials for Pb‐based perovskites to address the toxicity problem of lead. However, the development of Sn II ‐based perovskites has been hindered by their extreme instability. Here, we synthesized efficient and stable lead‐free Cs 4 SnBr 6 perovskite by using SnF 2 as tin source instead of easily oxidized SnBr 2 . The SnF 2 configures a fluorine‐rich environment, which can not only suppress the oxidation of Sn 2+ in the synthesis, but also construct chemically stable Sn−F coordination to hinder the electron transfer from Sn 2+ to oxygen within the long‐term operation process. The SnF 2 ‐derived Cs 4 SnBr 6 perovskite shows a high photoluminescence quantum yield of 62.8 %, and excellent stability against oxygen, moisture, and light radiation for 1200 h, representing one of the most stable lead‐free perovskites. The results pave a new pathway to enhance the optical properties and stability of lead‐free perovskite for high‐performance light emitters.
    Type of Medium: Online Resource
    ISSN: 0044-8249 , 1521-3757
    URL: Issue
    RVK:
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 505868-5
    detail.hit.zdb_id: 506609-8
    detail.hit.zdb_id: 514305-6
    detail.hit.zdb_id: 505872-7
    detail.hit.zdb_id: 1479266-7
    detail.hit.zdb_id: 505867-3
    detail.hit.zdb_id: 506259-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Angewandte Chemie, Wiley
    Abstract: Rational design and engineering of high‐performance molecular sieve membranes towards C 2 H 4 /C 2 H 6 and flue gas separations remain a grand challenge to date. In this study, through combining pore micro‐environment engineering with meso‐structure manipulation, highly c ‐oriented sub‐100 nm‐thick Cu@NH 2 ‐MIL‐125 membrane was successfully prepared. Coordinatively unsaturated Cu ions immobilized in the NH 2 ‐MIL‐125 framework enabled high‐affinity π‐complexation interactions with C 2 H 4 , resulting in an C 2 H 4 /C 2 H 6 selectivity approaching 13.6, which was 9.4 times higher than that of pristine NH 2 ‐MIL‐125 membrane; moreover, benefiting from π‐complexation interactions between CO 2 and Cu(I) sites, our membrane displayed superior CO 2 /N 2 selectivity of 43.2 with CO 2 permeance of 696 GPU, which far surpassed the benchmark of other pure MOF membranes. The above multi‐scale structure optimization strategy is anticipated to present opportunities for significantly enhancing the separation performance of diverse molecular sieve membranes.
    Type of Medium: Online Resource
    ISSN: 0044-8249 , 1521-3757
    RVK:
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 505868-5
    detail.hit.zdb_id: 506609-8
    detail.hit.zdb_id: 514305-6
    detail.hit.zdb_id: 505872-7
    detail.hit.zdb_id: 1479266-7
    detail.hit.zdb_id: 505867-3
    detail.hit.zdb_id: 506259-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Angewandte Chemie, Wiley, Vol. 135, No. 39 ( 2023-09-25)
    Abstract: The electrochemical conversion of nitrate pollutants into value‐added ammonia is a feasible way to achieve artificial nitrogen cycle. However, the development of electrocatalytic nitrate‐to‐ammonia reduction reaction (NO 3 − RR) has been hampered by high overpotential and low Faradaic efficiency. Here we develop an iron single‐atom catalyst coordinated with nitrogen and phosphorus on hollow carbon polyhedron (denoted as Fe−N/P−C) as a NO 3 − RR electrocatalyst. Owing to the tuning effect of phosphorus atoms on breaking local charge symmetry of the single‐Fe‐atom catalyst, it facilitates the adsorption of nitrate ions and enrichment of some key reaction intermediates during the NO 3 − RR process. The Fe−N/P−C catalyst exhibits 90.3 % ammonia Faradaic efficiency with a yield rate of 17980 μg h −1 mg cat −1 , greatly outperforming the reported Fe‐based catalysts. Furthermore, operando SR‐FTIR spectroscopy measurements reveal the reaction pathway based on key intermediates observed under different applied potentials and reaction durations. Density functional theory calculations demonstrate that the optimized free energy of NO 3 − RR intermediates is ascribed to the asymmetric atomic interface configuration, which achieves the optimal electron density distribution. This work demonstrates the critical role of atomic‐level precision modulation by heteroatom doping for the NO 3 − RR, providing an effective strategy for improving the catalytic performance of single atom catalysts in different electrochemical reactions.
    Type of Medium: Online Resource
    ISSN: 0044-8249 , 1521-3757
    URL: Issue
    RVK:
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 505868-5
    detail.hit.zdb_id: 506609-8
    detail.hit.zdb_id: 514305-6
    detail.hit.zdb_id: 505872-7
    detail.hit.zdb_id: 1479266-7
    detail.hit.zdb_id: 505867-3
    detail.hit.zdb_id: 506259-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Angewandte Chemie, Wiley, Vol. 136, No. 17 ( 2024-04-22)
    Abstract: ATR has emerged as a promising target for anti‐cancer drug development. Several potent ATR inhibitors are currently undergoing various stages of clinical trials, but none have yet received FDA approval due to unclear regulatory mechanisms. In this study, we discovered a potent and selective ATR degrader. Its kinase‐independent regulatory functions in acute myeloid leukemia (AML) cells were elucidated using this proteolysis‐targeting chimera (PROTAC) molecule as a probe. The ATR degrader, 8 i , exhibited significantly different cellular phenotypes compared to the ATR kinase inhibitor 1 . Mechanistic studies revealed that ATR deletion led to breakdown in the nuclear envelope, causing genome instability and extensive DNA damage. This would increase the expression of p53 and triggered immediately p53‐mediated apoptosis signaling pathway, which was earlier and more effective than ATR kinase inhibition. Based on these findings, the in vivo anti‐proliferative effects of ATR degrader 8 i were assessed using xenograft models. The degrader significantly inhibited the growth of AML cells in vivo, unlike the ATR inhibitor. These results suggest that the marked anti‐AML activity is regulated by the kinase‐independent functions of the ATR protein. Consequently, developing potent and selective ATR degraders could be a promising strategy for treating AML.
    Type of Medium: Online Resource
    ISSN: 0044-8249 , 1521-3757
    URL: Issue
    RVK:
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2024
    detail.hit.zdb_id: 505868-5
    detail.hit.zdb_id: 506609-8
    detail.hit.zdb_id: 514305-6
    detail.hit.zdb_id: 505872-7
    detail.hit.zdb_id: 1479266-7
    detail.hit.zdb_id: 505867-3
    detail.hit.zdb_id: 506259-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Angewandte Chemie, Wiley, Vol. 135, No. 6 ( 2023-02)
    Abstract: Metal ions play critical roles in facilitating peptide folding and inducing conformational transitions, thereby impacting on the biological activity of many proteins. However, the effect of metal sites on the hierarchical structures of biopolymers is still poorly understood. Herein, inspired by metalloproteins, we report an order‐to‐order conformational regulation in synthetic polymers mediated by a variety of metal ions. The copolymers are decorated with clinically available desferrioxamine (DFO) as an exogenous ligand template, which presents a geometric constraint toward peptide backbone via short‐range hydrogen bonding interactions, thus dramatically altering the secondary conformations and self‐assembly behaviors of polypeptides and allowing for a controllable β‐sheet to α‐helix transition modulated by metal–ligand interactions. These metallopolymers could form ferritin‐inspired hierarchical structures with high stability and membrane activity for efficient brain delivery across the blood–brain barrier (BBB) and long‐lasting magnetic resonance imaging (MRI) in vivo.
    Type of Medium: Online Resource
    ISSN: 0044-8249 , 1521-3757
    URL: Issue
    RVK:
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 505868-5
    detail.hit.zdb_id: 506609-8
    detail.hit.zdb_id: 514305-6
    detail.hit.zdb_id: 505872-7
    detail.hit.zdb_id: 1479266-7
    detail.hit.zdb_id: 505867-3
    detail.hit.zdb_id: 506259-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Angewandte Chemie, Wiley, Vol. 133, No. 22 ( 2021-05-25), p. 12401-12405
    Abstract: The construction of solid‐state fluorescent materials with high quantum yield and good processability is of vital importance in the preparation of organic light‐emitting devices. Herein, a series of tetraphenylethylene (TPE)‐based multicomponent emissive metallacages are prepared by the coordination‐driven self‐assembly of tetra‐(4‐pyridylphenyl)ethylene, cis‐Pt(PEt 3 ) 2 (OTf) 2 and tetracarboxylic ligands. These metallacages exhibit good emission both in solution and in the solid state because the coordination bonds and aggregation restrict the molecular motions of TPE synergistically, which suppresses the non‐radiative decay of these metallacages. Impressively, one of the metallacages achieves very high fluorescence quantum yield ( Φ F =88.46 %) in the solid state, which is further used as the coatings of a blue LED bulb to achieve white‐light emission. The study not only provides a general method to the preparation of TPE‐based metallacages but also explores their applications as solid‐state fluorescent materials, which will promote the future design and applications of metallacages as useful emissive devices.
    Type of Medium: Online Resource
    ISSN: 0044-8249 , 1521-3757
    URL: Issue
    RVK:
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 505868-5
    detail.hit.zdb_id: 506609-8
    detail.hit.zdb_id: 514305-6
    detail.hit.zdb_id: 505872-7
    detail.hit.zdb_id: 1479266-7
    detail.hit.zdb_id: 505867-3
    detail.hit.zdb_id: 506259-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Angewandte Chemie, Wiley, Vol. 135, No. 40 ( 2023-10-02)
    Abstract: Multicomponent metallacages can integrate the functions of their different building blocks to achieve synergetic effects for advanced applications. Herein, based on metal‐coordination‐driven self‐assembly, we report the preparation of a series of isoreticular tetraphenylethylene‐based metallacages, which are well characterized by multinuclear NMR, ESI‐TOF‐MS and single‐crystal X‐ray diffraction techniques. The suitable integration of photosensitizing tetraphenylethylene units as faces and Re catalytic complexes as the pillars into a single metallacage offers a high photocatalytic hydrogen production rate of 1707 μmol g −1  h −1 , which is one of the highest values among reported metallacages. Femtosecond transient absorption and DFT calculations reveal that the metallacage can serve as a platform for the precise and organized arrangement of the two building blocks, enabling efficient and directional electron transfer for highly efficient photocatalytic performance. This study provides a general strategy to integrate multifunctional ligands into a certain metallacage to improve the efficiency of photocatalytic hydrogen production, which will guide the future design of metallacages towards photocatalysis.
    Type of Medium: Online Resource
    ISSN: 0044-8249 , 1521-3757
    URL: Issue
    RVK:
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 505868-5
    detail.hit.zdb_id: 506609-8
    detail.hit.zdb_id: 514305-6
    detail.hit.zdb_id: 505872-7
    detail.hit.zdb_id: 1479266-7
    detail.hit.zdb_id: 505867-3
    detail.hit.zdb_id: 506259-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Wiley ; 2016
    In:  Angewandte Chemie Vol. 128, No. 23 ( 2016-06), p. 6837-6841
    In: Angewandte Chemie, Wiley, Vol. 128, No. 23 ( 2016-06), p. 6837-6841
    Abstract: Highly active and stable electrocatalysts for hydrogen generation from neutral‐pH water are highly desired, but very difficult to achieve. Herein we report a facile synthetic approach to cobalt nanocrystal assembled hollow nanoparticles (Co‐HNP), which serve as an electrocatalyst for hydrogen generation from neutral‐pH water. An electrode composed of Co‐HNP on a carbon cloth (CC) produces cathodic current densities of 10 and 100 mA cm −2 at overpotentials of −85 mV and −237 mV, respectively. The Co‐HNP/CC electrode retains its high activity after 20 h hydrogen generation at a high current density of 150 mA cm −2 , indicating the superior activity and stability of Co‐HNP as electrocatalyst.
    Type of Medium: Online Resource
    ISSN: 0044-8249 , 1521-3757
    URL: Issue
    RVK:
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2016
    detail.hit.zdb_id: 505868-5
    detail.hit.zdb_id: 506609-8
    detail.hit.zdb_id: 514305-6
    detail.hit.zdb_id: 505872-7
    detail.hit.zdb_id: 1479266-7
    detail.hit.zdb_id: 505867-3
    detail.hit.zdb_id: 506259-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Wiley ; 2021
    In:  Angewandte Chemie Vol. 133, No. 13 ( 2021-03-22), p. 7216-7223
    In: Angewandte Chemie, Wiley, Vol. 133, No. 13 ( 2021-03-22), p. 7216-7223
    Abstract: Sulfur incorporation into natural products is a critical area of biosynthetic studies. Recently, a subset of sulfur‐containing angucyclines has been discovered, and yet, the sulfur incorporation step is poorly understood. In this work, a series of thioether‐bridged angucyclines were discovered, and a cryptic epoxide Michael acceptor intermediate was revealed en route to thioangucyclines (TACs) A and B. However, systematic gene deletion of the biosynthetic gene cluster (BGC) by CRISPR/Cas9 could not identify any gene responsible for the conversion of the epoxide intermediate to TACs. Instead, a series of in vitro and in vivo experiments conclusively showed that the conversion is the result of two non‐enzymatic steps, possibly mediated by endogenous hydrogen sulfide. Therefore, the TACs are proposed to derive from a detoxification process. These results are expected to contribute to the study of both angucyclines and the utilization of inorganic sulfur in natural product biosynthesis.
    Type of Medium: Online Resource
    ISSN: 0044-8249 , 1521-3757
    URL: Issue
    RVK:
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 505868-5
    detail.hit.zdb_id: 506609-8
    detail.hit.zdb_id: 514305-6
    detail.hit.zdb_id: 505872-7
    detail.hit.zdb_id: 1479266-7
    detail.hit.zdb_id: 505867-3
    detail.hit.zdb_id: 506259-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Angewandte Chemie, Wiley, Vol. 134, No. 34 ( 2022-08-22)
    Abstract: We herein report the preparation of a series of hexaphenylbenzene (HPB)‐based deep blue‐emissive metallacages via multicomponent coordination‐driven self‐assembly. These metallacages feature prismatic structures with HPB derivatives as the faces and tetracarboxylic ligands as the pillars, as evidenced by NMR, mass spectrometry and X‐ray diffraction analysis. Light‐harvesting systems were further constructed by employing the metallacages as the donor and a naphthalimide derivative (NAP) as the acceptor, owing to their good spectral overlap. The judiciously chosen metallacage serves as the antenna, providing the suitable energy to excite the non‐emissive NAP, and thus resulting in bright emission for NAP in the solid state. This study provides a type of HPB‐based multicomponent emissive metallacage and explores their applications as energy donors to light up non‐emissive fluorophores in the solid state, which will advance the development of emissive metallacages as useful luminescent materials.
    Type of Medium: Online Resource
    ISSN: 0044-8249 , 1521-3757
    URL: Issue
    RVK:
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 505868-5
    detail.hit.zdb_id: 506609-8
    detail.hit.zdb_id: 514305-6
    detail.hit.zdb_id: 505872-7
    detail.hit.zdb_id: 1479266-7
    detail.hit.zdb_id: 505867-3
    detail.hit.zdb_id: 506259-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...