GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Chemistry/Pharmacy  (6)
  • VA 2100  (6)
Material
Publisher
Language
Years
Subjects(RVK)
  • Chemistry/Pharmacy  (6)
RVK
  • 1
    In: Angewandte Chemie, Wiley, Vol. 132, No. 47 ( 2020-11-16), p. 21315-21320
    Abstract: Scanning electrochemical microscopy (SECM) is one of the most important instrumental methods of modern electrochemistry due to its high spatial and temporal resolution. We introduced SECM into nanomachining by feeding the electrochemical modulations of the tip electrode back to the positioning system, and we demonstrated that SECM is a versatile nanomachining technique on semiconductor wafers using electrochemically induced chemical etching. The removal profile was correlated to the applied tip current when the tip was held stationary and when it was moving slowly ( 〈 20 μm s −1 ), and it followed Faraday's law. Both regular and irregular nanopatterns were translated into a spatially distributed current by the homemade digitally controlled SECM instrument. The desired nanopatterns were “sculpted” directly on a semiconductor wafer by SECM direct‐writing mode. The machining accuracy was controlled to the sub‐micrometer and even nanometer scales. This advance is expected to play an important role in electrochemical nanomachining for 3D micro/nanostructures in the semiconductor industry.
    Type of Medium: Online Resource
    ISSN: 0044-8249 , 1521-3757
    URL: Issue
    RVK:
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 505868-5
    detail.hit.zdb_id: 506609-8
    detail.hit.zdb_id: 514305-6
    detail.hit.zdb_id: 505872-7
    detail.hit.zdb_id: 1479266-7
    detail.hit.zdb_id: 505867-3
    detail.hit.zdb_id: 506259-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Wiley ; 2020
    In:  Angewandte Chemie International Edition Vol. 59, No. 47 ( 2020-11-16), p. 21129-21134
    In: Angewandte Chemie International Edition, Wiley, Vol. 59, No. 47 ( 2020-11-16), p. 21129-21134
    Abstract: Scanning electrochemical microscopy (SECM) is one of the most important instrumental methods of modern electrochemistry due to its high spatial and temporal resolution. We introduced SECM into nanomachining by feeding the electrochemical modulations of the tip electrode back to the positioning system, and we demonstrated that SECM is a versatile nanomachining technique on semiconductor wafers using electrochemically induced chemical etching. The removal profile was correlated to the applied tip current when the tip was held stationary and when it was moving slowly ( 〈 20 μm s −1 ), and it followed Faraday's law. Both regular and irregular nanopatterns were translated into a spatially distributed current by the homemade digitally controlled SECM instrument. The desired nanopatterns were “sculpted” directly on a semiconductor wafer by SECM direct‐writing mode. The machining accuracy was controlled to the sub‐micrometer and even nanometer scales. This advance is expected to play an important role in electrochemical nanomachining for 3D micro/nanostructures in the semiconductor industry.
    Type of Medium: Online Resource
    ISSN: 1433-7851 , 1521-3773
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 2011836-3
    detail.hit.zdb_id: 123227-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Angewandte Chemie International Edition, Wiley
    Abstract: Artificial (transfer) hydrogenases have been developed for organic synthesis, but they rely on precious metals. Native hydrogenases use Earth‐abundant metals, but these cannot be applied for organic synthesis due, in part, to their substrate specificity. Herein, we report the design and development of manganese transfer hydrogenases based on the biotin‐streptavidin technology. By incorporating bio‐mimetic Mn(I) complexes into the binding cavity of streptavidin, and through chemo‐genetic optimization, we have obtained artificial enzymes that hydrogenate ketones with nearly quantitative yield and up to 98 % enantiomeric excess (ee). These enzymes exhibit broad substrate scope and high functional‐group tolerance. According to QM/MM calculations and X‐ray crystallography, the S112Y mutation, combined with the appropriate chemical structure of the Mn cofactor plays a critical role in the reactivity and enantioselectivity of the artificial metalloenzyme (ArMs). Our work highlights the potential of ArMs incorporating base‐meal cofactors for enantioselective organic synthesis.
    Type of Medium: Online Resource
    ISSN: 1433-7851 , 1521-3773
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 2011836-3
    detail.hit.zdb_id: 123227-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Angewandte Chemie, Wiley, Vol. 135, No. 52 ( 2023-12-21)
    Abstract: In nature and technologies, many chemical reactions occur at interfaces with dimensions approaching that of a single reacting species in nano‐ and angstrom‐scale. Mechanisms governing reactions at this ultimately small spatial regime remain poorly explored because of challenges to controllably fabricate required devices and assess their performance in experiment. Here we report how efficiency of electrochemical reactions evolves for electrodes that range from just one atom in thickness to sizes comparable with and exceeding hydration diameters of reactant species. The electrodes are made by encapsulating graphene and its multilayers within insulating crystals so that only graphene edges remain exposed and partake in reactions. We find that limiting current densities characterizing electrochemical reactions exhibit a pronounced size effect if reactant's hydration diameter becomes commensurable with electrodes’ thickness. An unexpected blockade effect is further revealed from electrodes smaller than reactants, where incoming reactants are blocked by those adsorbed temporarily at the atomically narrow interfaces. The demonstrated angstrom‐scale electrochemistry offers a venue for studies of interfacial behaviors at the true molecular scale.
    Type of Medium: Online Resource
    ISSN: 0044-8249 , 1521-3757
    URL: Issue
    RVK:
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 505868-5
    detail.hit.zdb_id: 506609-8
    detail.hit.zdb_id: 514305-6
    detail.hit.zdb_id: 505872-7
    detail.hit.zdb_id: 1479266-7
    detail.hit.zdb_id: 505867-3
    detail.hit.zdb_id: 506259-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Angewandte Chemie, Wiley
    Abstract: Artificial (transfer) hydrogenases have been developed for organic synthesis, but they rely on precious metals. Native hydrogenases use Earth‐abundant metals, but these cannot be applied for organic synthesis due, in part, to their substrate specificity. Herein, we report the design and development of manganese transfer hydrogenases based on the biotin‐streptavidin technology. By incorporating bio‐mimetic Mn(I) complexes into the binding cavity of streptavidin, and through chemo‐genetic optimization, we have obtained artificial enzymes that hydrogenate ketones with nearly quantitative yield and up to 98 % enantiomeric excess (ee). These enzymes exhibit broad substrate scope and high functional‐group tolerance. According to QM/MM calculations and X‐ray crystallography, the S112Y mutation, combined with the appropriate chemical structure of the Mn cofactor plays a critical role in the reactivity and enantioselectivity of the artificial metalloenzyme (ArMs). Our work highlights the potential of ArMs incorporating base‐meal cofactors for enantioselective organic synthesis.
    Type of Medium: Online Resource
    ISSN: 0044-8249 , 1521-3757
    RVK:
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 505868-5
    detail.hit.zdb_id: 506609-8
    detail.hit.zdb_id: 514305-6
    detail.hit.zdb_id: 505872-7
    detail.hit.zdb_id: 1479266-7
    detail.hit.zdb_id: 505867-3
    detail.hit.zdb_id: 506259-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Angewandte Chemie International Edition, Wiley, Vol. 62, No. 52 ( 2023-12-21)
    Abstract: In nature and technologies, many chemical reactions occur at interfaces with dimensions approaching that of a single reacting species in nano‐ and angstrom‐scale. Mechanisms governing reactions at this ultimately small spatial regime remain poorly explored because of challenges to controllably fabricate required devices and assess their performance in experiment. Here we report how efficiency of electrochemical reactions evolves for electrodes that range from just one atom in thickness to sizes comparable with and exceeding hydration diameters of reactant species. The electrodes are made by encapsulating graphene and its multilayers within insulating crystals so that only graphene edges remain exposed and partake in reactions. We find that limiting current densities characterizing electrochemical reactions exhibit a pronounced size effect if reactant's hydration diameter becomes commensurable with electrodes’ thickness. An unexpected blockade effect is further revealed from electrodes smaller than reactants, where incoming reactants are blocked by those adsorbed temporarily at the atomically narrow interfaces. The demonstrated angstrom‐scale electrochemistry offers a venue for studies of interfacial behaviors at the true molecular scale.
    Type of Medium: Online Resource
    ISSN: 1433-7851 , 1521-3773
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 2011836-3
    detail.hit.zdb_id: 123227-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...