GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Physics  (1)
  • UA 4922  (1)
  • 1
    Online Resource
    Online Resource
    American Vacuum Society ; 2016
    In:  Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena Vol. 34, No. 2 ( 2016-03-01)
    In: Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, American Vacuum Society, Vol. 34, No. 2 ( 2016-03-01)
    Abstract: The discovery of graphene and its remarkable electronic properties has provided scientists with a revolutionary material system for electronics and optoelectronics. Here, the authors investigate molecular beam epitaxy (MBE) as a growth method for graphene layers. The standard dual chamber GENxplor has been specially modified by Veeco to achieve growth temperatures of up to 1850 °C in ultrahigh vacuum conditions and is capable of growth on substrates of up to 3 in. in diameter. To calibrate the growth temperatures, the authors have formed graphene on the Si-face of SiC by heating wafers to temperatures up to 1400 °C and above. To demonstrate the scalability, the authors have formed graphene on SiC substrates with sizes ranging from 10 × 10 mm2 up to 3-in. in diameter. The authors have used a carbon sublimation source to grow graphene on sapphire at substrate temperatures between 1000 and 1650 °C (thermocouple temperatures). The quality of the graphene layers is significantly improved by growing on hexagonal boron nitride (h-BN) substrates. The authors observed a significant difference in the sticking coefficient of carbon on the surfaces of sapphire and h-BN flakes. Our atomic force microscopy measurements reveal the formation of an extended hexagonal moiré pattern when our MBE layers of graphene on h-BN flakes are grown under optimum conditions. The authors attribute this moiré pattern to the commensurate growth of crystalline graphene on h-BN.
    Type of Medium: Online Resource
    ISSN: 2166-2746 , 2166-2754
    RVK:
    Language: English
    Publisher: American Vacuum Society
    Publication Date: 2016
    detail.hit.zdb_id: 3117331-7
    detail.hit.zdb_id: 1475429-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...