GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Physics  (4)
  • UA 4921  (4)
  • 1
    Online Resource
    Online Resource
    American Vacuum Society ; 2015
    In:  Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films Vol. 33, No. 3 ( 2015-05-01)
    In: Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, American Vacuum Society, Vol. 33, No. 3 ( 2015-05-01)
    Abstract: The radial line slot antenna plasma source is a type of surface wave plasma source driven by a planar slot antenna. Microwave power is transmitted through a slot antenna structure and dielectric window to a plasma characterized by a generation zone adjacent to the window and a diffusion zone that contacts a substrate. The diffusion zone is characterized by a very low electron temperature. This renders the source useful for soft etch applications and thin film deposition processes requiring low ion energy. Another property of the diffusion zone is that the plasma density tends to decrease from the axis to the walls under the action of ambipolar diffusion at distances far from where the plasma is generated. A previous simulation study [Yoshikawa and. Ventzek, J. Vac. Sci. Technol. A 31, 031306 (2013)] predicted that the anisotropy in transport parameters due to weak static magnetic fields less than 50 G could be leveraged to manipulate the plasma profile in the radial direction. These simulations motivated experimental tests in which weak magnetic fields were applied to a radial line slot antenna source. Plasma absorption probe measurements of electron density and etch rate showed that the magnetic fields remote from the wafer were able to manipulate both parameters. A summary of these results is presented in this paper. Argon plasma simulation trends are compared with experimental plasma and etch rate measurements. A test of the impact of magnetic fields on charge up damage showed no perceptible negative effect.
    Type of Medium: Online Resource
    ISSN: 0734-2101 , 1520-8559
    RVK:
    Language: English
    Publisher: American Vacuum Society
    Publication Date: 2015
    detail.hit.zdb_id: 1475424-1
    detail.hit.zdb_id: 797704-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Vacuum Society ; 1998
    In:  Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films Vol. 16, No. 1 ( 1998-01-01), p. 225-232
    In: Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, American Vacuum Society, Vol. 16, No. 1 ( 1998-01-01), p. 225-232
    Abstract: In situ Fourier-transform infrared (FTIR) ellipsometry has been performed on silicon substrates processed in a rf-biased transformer coupled plasma reactor. Plasmas in CHF3, CF4, C2F6, and C4F8 have been used. The reaction layer, which is present on the surface of the silicon wafer during the plasma process, has been analyzed in detail, addressing both chemical composition and thickness. The absolute reliability (expressed in terms of thickness) of the results is of the order of 0.01 nm, which corresponds to 3% of a monolayer. The instabilities of a silicon surface, which have been observed under specific conditions, can be of the order of tens of percents of a monolayer, which clearly illustrates the advantage of using a real in situ technique like FTIR ellipsometry over quasi in situ techniques like x-ray photoemission spectroscopy and Auger electron spectroscopy. For CHF3 plasmas it has been found that, if the bias increases to moderate levels (30–50 V), the fluorocarbon film deposition rate decreases and the silicon etching reaction rate increases. The reaction layer changes from a thick, predominantly CFx polymerlike film to a thin, carbon dominated layer of plasma and etching products showing vibrational absorptions of SiFx, C–C, and CF2. Increasing the bias voltage in a CHF3 plasma has a similar effect as increasing the F/C ratio of the feed gas.
    Type of Medium: Online Resource
    ISSN: 0734-2101 , 1520-8559
    RVK:
    Language: English
    Publisher: American Vacuum Society
    Publication Date: 1998
    detail.hit.zdb_id: 1475424-1
    detail.hit.zdb_id: 797704-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Vacuum Society ; 2013
    In:  Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films Vol. 31, No. 3 ( 2013-05-01)
    In: Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, American Vacuum Society, Vol. 31, No. 3 ( 2013-05-01)
    Abstract: The radial line slot antenna plasma source is used in semiconductor device fabrication. As is the case for all plasma sources, ever more strict uniformity control requirements are driven by the precision demands of new device technologies. Large volume diffusion plasmas, of which the radial line slot antenna source is one type, must overcome transport effects or diffusion modes that tend to “center peak” the plasma density near the wafer being processed. One way to resolve problematic transport effects is the insertion of magnetic fields into the plasma region. In this paper, the impact of the magnetic field on plasma properties is parameterized as a function of slot configuration. The magnetic field orientation and the magnitude of magnetic field are varied in a computational study in which the source is modeled as a two-dimensional axisymmetric quasineutral plasma. This work employs a finite element model simulation. The magnitude of magnetic fields considered is 50 Gauss maximum with a microwave power of 3000 W at a pressure of 20 mTorr. 20 mTorr is chosen as this is a condition where diffusion effects are challenging to counteract. The study showed that there are specific conditions for slot configuration and magnetic field that improve the plasma controllability and some that do not. Plasma property modulation is most effective when the plasma source region is placed at large radius with axial magnetic fields. There are synergistic effects between the slot location and magnetic field that are important and placing large magnetic fields at the chamber edge alone does not result in improved uniformity. Electron cyclotron resonance (ECR) heating and the impact of pulsing the magnetic fields are presented. ECR heating is not important for the conditions relevant to this paper and pulsing is shown to have benefit.
    Type of Medium: Online Resource
    ISSN: 0734-2101 , 1520-8559
    RVK:
    Language: English
    Publisher: American Vacuum Society
    Publication Date: 2013
    detail.hit.zdb_id: 1475424-1
    detail.hit.zdb_id: 797704-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Vacuum Society ; 2013
    In:  Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films Vol. 31, No. 3 ( 2013-05-01)
    In: Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, American Vacuum Society, Vol. 31, No. 3 ( 2013-05-01)
    Abstract: The radial line slot antenna plasma source is a high-density microwave plasma source comprising a high electron temperature source region within the plasma skin depth from a coupling window and low electron temperature diffusion region far from the window. The plasma is typically comprised of inert gases like argon and mixtures of halogen or fluorocarbon gases for etching. Following the experimental study of Tian et al. [J. Vac. Sci. Technol. A 24, 1421 (2006)], a two-dimensional computational model is used to describe the essential features of the source. A high density argon plasma is described using the quasi-neutral approximation and coupled to a frequency-domain electromagnetic wave solver to describe the plasma-microwave interactions in the source. The plasma is described using a multispecies plasma chemistry mechanism developed specifically for microwave excitation conditions. The plasma is nonlocal by nature with locations of peak power deposition and peak plasma density being very different. The spatial distribution of microwave power coupling depends on whether the plasma is under- or over-dense and is described well by the model. The model predicts the experimentally observed low-order diffusion mode radial plasma profiles. The trends of spatial profiles of electron density and electron temperature over a wide range of power and pressure conditions compare well with experimental results.
    Type of Medium: Online Resource
    ISSN: 0734-2101 , 1520-8559
    RVK:
    Language: English
    Publisher: American Vacuum Society
    Publication Date: 2013
    detail.hit.zdb_id: 1475424-1
    detail.hit.zdb_id: 797704-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...