GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Physics  (2)
  • UA 1000  (2)
Material
Publisher
Language
Years
Subjects(RVK)
  • Physics  (2)
RVK
  • UA 1000  (2)
  • 1
    Online Resource
    Online Resource
    AIP Publishing ; 2013
    In:  Applied Physics Letters Vol. 102, No. 20 ( 2013-05-20)
    In: Applied Physics Letters, AIP Publishing, Vol. 102, No. 20 ( 2013-05-20)
    Abstract: We introduce a simple, fast, and non-intrusive experimental method to obtain the basic parameters of femtosecond laser-generated plasma filament. The method is based on the channeling of microwaves along both a plasma filament and a well-defined conducting wire. By comparing the detected microwaves that propagate along the plasma filament and a copper wire with known conductivity and spatial dimension, the basic parameters of the plasma filament can be easily obtained. As a result of the possibility of channeling microwave radiation along the plasma filament, we were then able to obtain the plasma density distribution along the filament length.
    Type of Medium: Online Resource
    ISSN: 0003-6951 , 1077-3118
    RVK:
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2013
    detail.hit.zdb_id: 211245-0
    detail.hit.zdb_id: 1469436-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Applied Physics Letters, AIP Publishing, Vol. 123, No. 8 ( 2023-08-21)
    Abstract: To enable organic light-emitting diodes (OLEDs) to be rolled and folded, we need a flexible encapsulation layer that can protect organic materials and metal electrodes that are susceptible to moisture and oxygen. Thin films that encapsulate organic electronic devices need to have excellent mechanical properties to prevent cracks during bending. Using plasma-enhanced chemical vapor deposition (PECVD) and other techniques, we fabricated high-density, stress gradient sandwich-structured films and studied the residual stress of deposited films on encapsulating films and their effect on delamination and cracking. We found that by adjusting the H2/N2 gas ratio and optimizing the Si:N:H ratio of PECVD SiNx:H films, denser, more etch-resistant, higher compressive stress and lower hydrogen content films can be deposited, thereby enable better flexible thin film encapsulation (TFE). We also deposited an inorganic/organic/inorganic sandwich structure film and utilized stress gradient changes to relieve the tensile stress on the outer film during bending. After standardized testing, the OLED with the stress gradient encapsulation structure has no dark spots after bending 10 000 times (bending radius 2 mm). This technique can be used in flexible TFE for various organic devices, showing promising applications in bendable and wearable products.
    Type of Medium: Online Resource
    ISSN: 0003-6951 , 1077-3118
    RVK:
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2023
    detail.hit.zdb_id: 211245-0
    detail.hit.zdb_id: 1469436-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...