GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Wiley-Blackwell  (3)
Publikationsart
Verlag/Herausgeber
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2015-02-06
    Beschreibung: We present a new approach to search for a subsurface ocean within Ganymede through observations and modeling of the dynamics of its auroral ovals. The locations of the auroral ovals oscillate due to Jupiter's time-varying magnetospheric field seen in the rest frame of Ganymede. If an electrically conductive ocean is present, the external time-varying magnetic field is reduced due to induction within the ocean and the oscillation amplitude of the ovals decreases. Hubble Space Telescope (HST) observations show that the locations of the ovals oscillate on average by 2.0° ± 1.3°. Our model calculations predict a significantly stronger oscillation by 5.8° ± 1.3° without ocean compared to 2.2°±1.3° if an ocean is present. Because the ocean and the no-ocean hypotheses cannot be separated by simple visual inspection of individual HST images, we apply a statistical analysis including a Monte-Carlo test to also address the uncertainty caused by the patchiness of observed emissions. The observations require a minimum electrical conductivity of 0.09 S/m for an ocean assumed to be located between 150 km and 250 km depth or alternatively a maximum depth of the top of the ocean at 330 km. Our analysis implies that Ganymede's dynamo possesses an outstandingly low quadrupole-to-dipole moment ratio. The new technique applied here is suited to probe the interior of other planetary bodies by monitoring their auroral response to time-varying magnetic fields.
    Print ISSN: 0148-0227
    Thema: Geologie und Paläontologie , Physik
    Publiziert von Wiley-Blackwell im Namen von American Geophysical Union (AGU).
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2016-02-23
    Beschreibung: We analyze a large set of far-ultraviolet oxygen aurora images of Europa's atmosphere taken by Hubble's Space Telescope Imaging Spectrograph (HST/STIS) in 1999 and on 19 occasions between 2012 and 2015. We find that both brightness and aurora morphology undergo systematic variations correlated to the periodically changing plasma environment. The time-variable morphology seems to be strongly affected by Europa's interaction with the magnetospheric plasma. The brightest emissions are often found in the polar region where the ambient Jovian magnetic field line is normal to Europa's disk. Near the equator, where bright spots are found at Io, Europa's aurora is faint suggesting a general difference in how the plasma interaction shapes the aurora at Io and Europa. The dusk side is consistently brighter than the dawn side with only few exceptions, which can not be readily explained by obvious plasma physical or known atmospheric effects. Brightness ratios of the near-surface OI] 1356 Å to OI 1304 Å emissions between 1.5 and 2.8 with a mean ratio of 2.0 are measured, confirming that Europa's bound atmosphere is dominated by O 2 . The 1356/1304 ratio decreases with increasing altitude in agreement with a more extended atomic O corona, but O 2 prevails at least up to altitudes of ∼900 km. Differing 1356/1304 line ratios on the plasma upstream and downstream hemispheres are explained by a differing O mixing ratio in the surface-near O 2 atmosphere of ∼5% (upstream) and ≲1% (downstream), respectively. During several eclipse observations, the aurora does not reveal any signs of systematic changes compared to the sunlit images suggesting no or only weak influence of sunlight on the aurora and an optically thin atmosphere.
    Print ISSN: 0148-0227
    Thema: Geologie und Paläontologie , Physik
    Publiziert von Wiley-Blackwell im Namen von American Geophysical Union (AGU).
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2017-02-05
    Beschreibung: The morphology of Io's aurora is dominated by bright spots near the equator that oscillate up and down in approximate correlation with the oscillating orientation of the Jovian magnetospheric field. Analyzing Hubble Space Telescope images we find that the auroral spots oscillate in phase with the time-variable Jovian magnetic field at Io and that the amplitude of the spot oscillations is reduced by 15% (±5%) with respect to the amplitude of the magnetic field oscillation. We investigate the effects of Io's plasma interaction and magnetic induction in the moon's interior on the magnetic field topology and the aurora oscillations using a magnetohydrodynamic (MHD) simulation and an analytical induction model. The results from the MHD simulation suggest that the plasma interaction has minor effects on the oscillations, while the magnetic induction generally reduces magnetic field oscillations near the surface. However, the analytical model shows that induction in any near-surface layer for which the skin depth is larger than the thickness - like a conductive magma ocean - would induce a phase shift, in conflict with the observations. Under the assumption that the spot oscillations represent the magnetic field oscillation, we constrain the conductance of a near-surface layer to 1 × 10 3  S or lower. A magma ocean with conductances of ∼10 4  S or higher as derived from Galileo magnetometer measurements would cause overly strong attenuation of the amplitude in addition to the irreconcilable phase shift. The observed weakly attenuated, in-phase spot oscillation is consistent with induction in a deep, highly conductive layer like Io's metallic core.
    Print ISSN: 0148-0227
    Thema: Geologie und Paläontologie , Physik
    Publiziert von Wiley-Blackwell im Namen von American Geophysical Union (AGU).
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...