GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Letters Edition 14 (1976), S. 329-333 
    ISSN: 0360-6384
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Additional Material: 1 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-03-04
    Description: Preliminary investigations suggest biological geotextiles could be an effective and inexpensive soil conservation method, with enormous global potential. However, limited quantitative data are available on the erosion-reducing effects of biological geotextiles. Therefore, the objective is to evaluate the effectiveness of biological geotextiles in reducing runoff and soil loss under controlled laboratory conditions and under field conditions reflecting continental, temperate and tropical environments. In laboratory experiments, interrill runoff, interrill erosion and concentrated flow erosion were simulated using various rainfall intensities, flow shear stresses and slope gradients. Field plot data on the effects of biological geotextiles on sheet and rill erosion were collected in several countries (UK, Hungary, Lithuania, South Africa, Brazil, China and Thailand) under natural rainfall. Overall, based on the field plot data, the tested biological geotextiles reduce runoff depth and soil loss rates on average by 46 per cent and 79 per cent, respectively, compared to the values for bare soil. For the field and laboratory data of all tested geotextiles combined, no significant difference in relative runoff depth between field measurements and interrill laboratory experiments is observed. However, relative soil loss rate for the concentrated flow laboratory experiments are significantly higher compared to the interrill laboratory experiments and the field plot measurements. Although this study points to some shortcomings of conducting laboratory experiments to represent true field conditions, it can be concluded that the range and the mean relative runoff depth and soil loss rate as observed with the field measurements is similar to those as observed with the interrill laboratory experiments. Copyright © 2011 John Wiley & Sons, Ltd.
    Print ISSN: 1085-3278
    Electronic ISSN: 1099-145X
    Topics: Geography , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-03-04
    Description: Available studies do not allow comparison and quantification of the effects of biological geotextiles on runoff and water erosion rates under different agro-environmental conditions. Hence, this paper addresses this issue by comparing runoff and soil loss data obtained from field experiments (using different types of biological geotextiles) conducted in the United Kingdom, Hungary, South Africa, China, Thailand and Vietnam. Palm leaf mats (Borassus and Buriti mats) were used in the European countries. In the UK, Borassus mats were used as whole plot cover (area coverage ∼76 per cent; termed Borassus completely covered to differentiate from the Borassus buffer strip plots) and as buffer zones (area coverage ∼10 per cent), whereas Buriti mats were used only as buffer zones (area coverage ∼10 per cent). Only Lala mats were used in South Africa. Elsewhere (China, Thailand and Vietnam) biological geotextiles were constructed using other indigenous local materials, such as bamboo, rice straw and maize stalks. Biological geotextiles were used on bare plots in South Africa and the European countries. In the UK, plots were maintained bare by need based herbicide spraying. However, in South Asia, different crops were grown on the geotextile-covered plots. Results suggest that biological geotextiles were very effective for soil erosion control in all locations and the effectiveness for decreasing soil erosion rates by water was in the range of ∼67–99 per cent. The effectiveness of biological geotextiles in reducing runoff volume was in the range of ∼26–81 per cent. In the UK, total runoff and soil loss (during 8 January 2007–6 May 2008; total precipitation = 1145.8 mm) from the Borassus (one metre wide) buffer zone plots (cover percentage ∼7.6 per cent) were, respectively, ∼81 and ∼93 per cent less than bare plots. In Hungary and China, plots with ∼38 and 22 per cent geotextile-cover, respectively, had ∼88 and 96 per cent less soil loss, than bare plots. In most months with low precipitation (depth) in Hungary and the UK, runoff volume was greater from plots with geotextile-cover than from bare soils. However, complete data sets indicate that in the UK and Hungary, runoff reduction by different treatments over bare plots ranged between ∼26 and 81 per cent. Results from the UK showed that plots with buffer strips of Borassus and Buriti mats had similar effects in reducing soil losses as completely covered plots of the Borassus mats. Thus, foreseeing biological geotextile-cover on vulnerable segments of the landscape is highly effective for soil erosion control. Copyright © 2011 John Wiley & Sons, Ltd.
    Print ISSN: 1085-3278
    Electronic ISSN: 1099-145X
    Topics: Geography , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...