GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0006-3592
    Keywords: metabolic engineering ; CHO cell ; E2F-1 ; serum-free cell culture ; two-dimensional electrophoresis of proteins ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Engineering of the cell cycle can be an effective means for bypassing growth factor requirements of animal cells. Cloned human E2F-1 from Nalm 6 cells was subcloned into pRc/CMV and transfected into Chinese hamster ovary (CHO) cells. Ten stable transfectant clones isolated from cells cultured under neomycin-resistance selection pressure all expressed significantly higher amounts of E2F-1 than control cells as determined by Western analysis. Confocal immunofluorescent microscopy and Southern analysis of several clones also provided evidence for the expression of cloned E2F-1 in these cells. CHO K1:E2F-1 cells are able to proliferate on well-defined serum- and protein-free basal medium and exhibit an S-phase extended by 65% compared to CHO K1 cells mitogenically stimulated by basic fibroblast growth factor (bFGF). Two-dimensional electrophoresis of the intracellular proteins of E2F-1 clones shows an increase in 236 gene products compared to CHO K1 control cells, further verifying a functional regulatory role of cloned E2F-1 in CHO cells. Among these upregulated species is the cell cycle regulatory protein, cyclin A, which has already been shown to be regulated by E2F-1 in human fibroblasts. Overexpression of cloned E2F-1 in CHO cells is a potentially useful new strategy for bypassing serum requirements in mammalian cell culture. Furthermore, such cell cycle control stimulus-protein pattern response data can contribute to a clearer understanding of complex multigene networks involved in mammalian cell cycle regulation. © 1996 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...