GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2024-02-07
    Beschreibung: Germany 2050: For the first time Germany reached a balance between its sources of anthropogenic CO2 to the atmosphere and newly created anthropogenic sinks. This backcasting study presents a fictional future in which this goal was achieved by avoiding (∼645 Mt CO2), reducing (∼50 Mt CO2) and removing (∼60 Mt CO2) carbon emissions. This meant substantial transformation of the energy system, increasing energy efficiency, sector coupling, and electrification, energy storage solutions including synthetic energy carriers, sector-specific solutions for industry, transport, and agriculture, as well as natural-sink enhancement and technological carbon dioxide options. All of the above was necessary to achieve a net-zero CO2 system for Germany by 2050.
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2020-07-06
    Beschreibung: Climate simulations for the North Atlantic and Europe for recent and future conditions simulated with the regionally coupled ROM model are analyzed and compared to the results from the MPI‐ESM. The ROM simulations also include a biogeochemistry and ocean tides. For recent climate conditions, ROM generally improves the simulations compared to the driving model MPI‐ESM. Reduced oceanic biases in the Northern Atlantic are found, as well as a better simulation of the atmospheric circulation, notably storm tracks and blocking. Regarding future climate projections for the 21st century following the RCP 4.5 and 8.5 scenarios, MPI‐ESM and ROM largely agree qualitatively on the climate change signal over Europe. However, many important differences are identified. For example, ROM shows an SST cooling in the Subpolar Gyre which is not present in MPI‐ESM. Under the RCP8.5 scenario, ROM Arctic sea ice cover is thinner and reaches the seasonally ice‐free state by 2055, well before MPI‐ESM. This shows the decisive importance of higher ocean resolution and regional coupling for determining the regional responses to global warming trends. Regarding biogeochemistry, both ROM and MPI‐ESM simulate a widespread decline in winter nutrient concentration in the North Atlantic of up to ~35%. On the other hand, the phytoplankton spring bloom in the Arctic and in the North‐Western Atlantic starts earlier and the yearly primary production is enhanced in the Arctic in the late 21st century. These results clearly demonstrate the added value of ROM to determine more detailed and more reliable climate projections at the regional scale.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2015-02-17
    Beschreibung: The general circulation models used to simulate global climate typically feature resolution too coarse to reproduce many smaller scale processes, which are crucial to determining the regional responses to climate change. A novel approach to downscale climate change scenarios is presented which includes the interactions between the North Atlantic Ocean and the European shelves as well as their impact on the North Atlantic and European climate. The goal of this paper is to introduce the global ocean – regional atmosphere coupling concept and to show the potential benefits of this model system to simulate present day climate. A global ocean – sea ice – marine biogeochemistry model (MPIOM/HAMOCC) with regionally high horizontal resolution is coupled to an atmospheric regional model (REMO) and global terrestrial hydrology model (HD) via the OASIS coupler. Moreover, results obtained with ROM using NCEP/NCAR reanalysis and ECHAM5/MPIOM CMIP3 historical simulations as boundary conditions are presented and discussed for the North Atlantic and North European region. The validation of all the model components, i.e. ocean, atmosphere, terrestrial hydrology and ocean biogeochemistry is performed and discussed. The careful and detailed validation of ROM provides evidence that the proposed model system improves the simulation of many aspects of the regional climate, remarkably the ocean, even though some biases persist in other model components, thus leaving potential for future improvement. We conclude that ROM is a powerful tool to estimate possible impacts of climate change on the regional scale.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...