GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Wiley ; 2021
    In:  Ecology and Evolution Vol. 11, No. 21 ( 2021-11), p. 15141-15152
    In: Ecology and Evolution, Wiley, Vol. 11, No. 21 ( 2021-11), p. 15141-15152
    Abstract: We tested the response of algal epifauna to the direct effects of predation and the indirect consequences of habitat change due to grazing and nutrient supply through upwelling using an abundant intertidal rhodophyte, Gelidium pristoides . We ran a mid‐shore field experiment at four sites (two upwelling sites interspersed with two non‐upwelling sites) along 450 km of the south coast of South Africa. The experiment was started in June 2014 and ran until June 2015. Four treatments (predator exclusion, grazer exclusion, control, and procedural control) set out in a block design ( n  = 5) were monitored monthly for algal cover for the first 6 months and every 2 months for the last 6 months. Epifaunal abundance, species composition, algal cover, and algal architectural complexity (measured using fractal geometry) were assessed after 12 months. Predation had no significant effect on epifaunal abundances, while upwelling interacted with treatment. Grazing reduced the architectural complexity of algae, with increased fractal dimensions in the absence of grazers, and also reduced algal cover at all sites, though the latter effect was only significant for upwelling sites. Epifaunal community composition was not significantly affected by the presence of herbivores or predators but differed among sites independently of upwelling; sites were more similar to nearby sites than those farther away. In contrast, total epifaunal abundance was significantly affected by grazing, when normalized to algal cover. Grazing reduced the cover of algae; thus, epifaunal abundances were not affected by the direct top‐down effects of predation but did respond to the indirect effects of grazing on habitat availability and quality. Our results indicate that epifaunal communities can be strongly influenced by the indirect consequences of biotic interactions.
    Type of Medium: Online Resource
    ISSN: 2045-7758 , 2045-7758
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 2635675-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Fisheries Oceanography, Wiley, Vol. 24, No. 3 ( 2015-05), p. 205-218
    Abstract: We used satellite telemetry data to investigate the movement patterns and habitat use of juvenile shortfin makos Isurus oxyrinchus (Lamnidae) tagged in the Great Australian Bight, southern Australia. Tracking durations ranged from 49–672 days and six deployments were 〉  1 year. During winter and spring, some shortfin makos migrated to the tropical NE Indian Ocean and Coral Sea, and the Subtropical Front region. One shortfin mako undertook an extended migration of 25 550 km across the Indian Ocean. Areas characterized by sea‐mounts in the NE Indian Ocean, the oceanic Subtropical Front region, and the continental shelf edge (200‐m depth) and slope canyons were visited by several sharks. Juvenile shortfin makos used the outer continental shelf, the shelf edge, the slope and oceanic waters during migrations and mostly exhibited fidelity in the mid‐outer shelf, the shelf edge and slope habitats characterized by high bathymetric relief and oceanographic frontal gradients. Our findings highlighted that the continental shelf and slope and associated submarine canyons of the Great Australian Bight represent ecologically important habitats for juvenile shortfin makos. The findings of this study will be pertinent during future management processes for this highly migratory species in this Southern Hemisphere region.
    Type of Medium: Online Resource
    ISSN: 1054-6006 , 1365-2419
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2015
    detail.hit.zdb_id: 1214985-8
    detail.hit.zdb_id: 2020300-7
    SSG: 21,3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Global Change Biology, Wiley, Vol. 27, No. 11 ( 2021-06), p. 2549-2560
    Abstract: Temperature extremes are predicted to intensify with climate change. These extremes are rapidly emerging as a powerful driver of species distributional changes with the capacity to disrupt the functioning and provision of services of entire ecosystems, particularly when they challenge ecosystem engineers. The subsequent search for a robust framework to forecast the consequences of these changes mostly ignores within‐species variation in thermal sensitivity. Such variation can be intrinsic, but can also reflect species interactions. Intertidal mussels are important ecosystem engineers that host symbiotic endoliths in their shells. These endoliths unexpectedly act as conditionally beneficial parasites that enhance the host's resistance to intense heat stress. To understand how this relationship may be altered under environmental change, we examined the conditions under which it becomes advantageous by reducing body temperature. We deployed biomimetic sensors (robomussels), built using shells of mussels ( Mytilus galloprovincialis ) that were or were not infested by endoliths, at nine European locations spanning a temperature gradient across 22°of latitude (Orkney, Scotland to the Algarve, Portugal). Daily wind speed and solar radiation explained the maximum variation in the difference in temperature between infested and non‐infested robomussels; the largest difference occurred under low wind speed and high solar radiation. From the robomussel data, we inferred body temperature differences between infested and non‐infested mussels during known heatwaves that induced mass mortality of the mussel Mytilus edulis along the coast of the English Channel in summer 2018 to quantify the thermal advantage of endolith infestation during temperature extremes. Under these conditions, endoliths provided thermal buffering of between 1.7°C and 4.8°C. Our results strongly suggest that sustainability of intertidal mussel beds will increasingly depend on the thermal buffering provided by endoliths. More generally, this work shows that biomimetic models indicate that within‐species thermal sensitivity to global warming can be modulated by species interactions, using an intertidal host–symbiont relationship as an example.
    Type of Medium: Online Resource
    ISSN: 1354-1013 , 1365-2486
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 2020313-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Functional Ecology, Wiley, Vol. 35, No. 12 ( 2021-12), p. 2691-2706
    Abstract: Heat‐induced mass mortalities involving ecosystem engineers may have long‐lasting detrimental effects at the community level, eliminating the ecosystem services they provide. Intertidal mussels are ecologically and economically valuable with some populations facing unprecedented heat‐induced mass mortalities. Critically, mussels are also frequently infested by endolithic parasites that modify shell albedo, hence reducing overheating and mortality rates under heat stress. Using a biophysical model, we explored the topographical and meteorological conditions under which endolithically driven thermal buffering becomes critical to survival. Based on meteorological data from a global climate analysis, we modelled body temperatures of infested and non‐infested mussels over the last decade (2010–2020) at nine sites spread across c . 20° of latitude. We show that thermal buffering is enhanced where and when heat stress is greatest, that is, on sun‐exposed surfaces under high solar radiation and high air temperature. These results suggest that new co‐evolutionary pathways are likely to open for these symbiotic organisms as climate continues to change, potentially tipping the balance of the relationship from a parasitic to a more mutualistic one. However, endolithically driven reductions in body temperatures can also occur at or below optimal temperatures, thereby reducing the host's metabolic rates and making the interplay of positive and negative effects complex. In parallel, we hindcasted body temperatures using empirical data from nearby weather stations and found that predictions were very similar with those obtained from two global climate reanalyses (i.e. NCEP‐DOE Reanalysis 2 and ECMWF Reanalysis v5). This result holds great promise for modelling the distribution of terrestrial ectotherms at ecologically relevant spatiotemporal scales, as it suggests we can reasonably bypass the practical issues associated with weather stations. For intertidal ectotherms, however, the challenge will be incorporating body temperatures over the full tidal cycle. A free Plain Language Summary can be found within the Supporting Information of this article.
    Type of Medium: Online Resource
    ISSN: 0269-8463 , 1365-2435
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 2020307-X
    detail.hit.zdb_id: 619313-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Wiley ; 2013
    In:  Ecological Research Vol. 28, No. 3 ( 2013-05), p. 407-416
    In: Ecological Research, Wiley, Vol. 28, No. 3 ( 2013-05), p. 407-416
    Abstract: Intertidal organisms are vulnerable to global warming as they already live at, or near to, the upper limit of their thermal tolerance window. The behaviour of ectotherms could, however, dampen their limited physiological abilities to respond to climate change (e.g. drier and warmer environmental conditions) which could substantially increase their survival rates. The behaviour of ectotherms is still mostly overlooked in climate change studies. Here, we investigate the potential of aggregation behaviour to compensate for climate change in an intertidal gastropod species ( Nerita atramentosa ) in South Australia. We used thermal imaging to investigate (1) the heterogeneity in individual snail water content and body temperature and surrounding substratum temperature on two topographically different habitats (i.e. rock platform and boulders) separated by 250 m at both day‐ and night‐times, (2) the potential relationship between environment temperature (air and substratum) and snail water content and body temperature, and (3) the potential buffering effect of aggregation behaviour on snail water content and body temperature. Both substratum and snail temperature were more heterogeneous at small spatial scales (a few centimetres to a few metres) than between habitats. This reinforces the evidence that mobile intertidal ectotherms could survive locally under warmer conditions if they can locate and move behaviourally in local thermal refuges. N. atramentosa behaviour, water content and body temperature during emersion seem to be related to the thermal stability and local conditions of the habitat occupied. Aggregation behaviour reduces both desiccation and heat stresses but only on the boulder field. Further investigations are required to identify the different behavioural strategies used by ectothermic species to adapt to heat and dehydrating conditions at the habitat level. Ultimately, this information constitutes a fundamental prerequisite to implement conservation management plans for ectothermic species identified as vulnerable in the warming climate.
    Type of Medium: Online Resource
    ISSN: 0912-3814 , 1440-1703
    Language: English
    Publisher: Wiley
    Publication Date: 2013
    detail.hit.zdb_id: 2023900-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Wiley ; 2006
    In:  Limnology and Oceanography: Methods Vol. 4, No. 7 ( 2006-07), p. 260-267
    In: Limnology and Oceanography: Methods, Wiley, Vol. 4, No. 7 ( 2006-07), p. 260-267
    Type of Medium: Online Resource
    ISSN: 1541-5856
    Language: English
    Publisher: Wiley
    Publication Date: 2006
    detail.hit.zdb_id: 2161715-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Wiley ; 2011
    In:  Global Change Biology Vol. 17, No. 4 ( 2011-04), p. 1740-1749
    In: Global Change Biology, Wiley, Vol. 17, No. 4 ( 2011-04), p. 1740-1749
    Type of Medium: Online Resource
    ISSN: 1354-1013
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2011
    detail.hit.zdb_id: 2020313-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Austral Ecology, Wiley, Vol. 34, No. 8 ( 2009-12), p. 878-888
    Type of Medium: Online Resource
    ISSN: 1442-9985 , 1442-9993
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2009
    detail.hit.zdb_id: 2095166-8
    detail.hit.zdb_id: 2019899-1
    SSG: 12
    SSG: 14
    SSG: 7,29
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Fisheries Oceanography, Wiley, Vol. 22, No. 2 ( 2013-03), p. 102-112
    Type of Medium: Online Resource
    ISSN: 1054-6006
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2013
    detail.hit.zdb_id: 1214985-8
    detail.hit.zdb_id: 2020300-7
    SSG: 21,3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Sedimentology, Wiley, Vol. 69, No. 3 ( 2022-04), p. 1231-1251
    Abstract: Transport of continental shelf sediments to the deep ocean can be studied from displaced symbiont‐bearing larger benthic foraminifera found in turbidity current deposits. The larger benthic foraminifera habitat depth, physical characteristics and preservation serve as indicators for understanding sediment transport dynamics near the seabed and in the water column. Here, an experiment was designed to explore sediment transport in a closed flume system using simulated high current velocities. Shelf sediments from the Gulf of Eilat/Aqaba, dominated by Amphistegina papillosa and Operculina ammonoides, were subjected to 60 cm s −1 and 80 cm s −1 current velocities while collected in a 10 cm vertical sediment trap. Larger benthic foraminifera abundance, shell physical properties and preservation were analyzed and compared with the original bulk sediments. The experiment results showed that at 80 cm s −1 velocity, larger benthic foraminifera shells of all sizes and preservations are efficiently resuspended and transported in large quantities throughout the water column, as opposed to their transport as bedload by the lower velocity current. Larger benthic foraminifera shape also has a role in the transport distances and accumulation depths. Operculina ammonoides shells were found to be more portable, compared to Amphistegina papillosa , due to their flatter discoid shape. The results suggest that a threshold velocity of ca 80 cm s −1 was needed to generate the thick coarse deposits found in the Gulf of Eilat/Aqaba slope sedimentary record, which were previously suggested to be triggered by large magnitude seismic events. Lower velocities probably winnowed minor amounts of larger benthic foraminifera shells (with little or no coarser sediments) that were deposited as a thin sand layer may point to lower magnitude seismic triggers. In conclusion, larger benthic foraminifera shells are transported and deposited in accordance with their hydrodynamic properties, resulting in assemblage differentiation along the transport pathway. This study shows that the fossil biogenic composition in slope sediments includes valuable information on current velocities, transport dynamics and possible triggers in the geological record.
    Type of Medium: Online Resource
    ISSN: 0037-0746 , 1365-3091
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2020955-1
    detail.hit.zdb_id: 206889-8
    SSG: 13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...